ORIGINAL ARTICLE
A FAST, “ZERO SYNAPSE” ACOUSTIC REFLEX: MIDDLE EAR MUSCLES PHYSICALLY SENSE EARDRUM VIBRATION
Andrew Bell 1, A,D-F
 
 
 
More details
Hide details
1
John Curtin School of Medical Research, The Australian National University, Canberra, Australia
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article;
 
 
Publication date: 2017-12-31
 
 
Corresponding author
Andrew Bell   

Andrew Bell, JCSMR, 131 Garran Road, Australian National University, Canberra, ACT 2601, Australia, email: andrew.bell@anu.edu.au
 
 
J Hear Sci 2017;7(4):33-44
 
KEYWORDS
ABSTRACT
The middle ear muscles may be inconspicuous, but they are special. Silently standing guard at the entrance to the inner ear, their role is to spring into action whenever sound input rises, protecting the highly sensitive cochlea from overload. Such a task requires the utmost speed, for sounds can reach damaging levels within milliseconds. Neural-mediated mechanisms are slow, with the acoustic reflex arc taking up to a hundred milliseconds or more. Here, evidence is assembled that the middle ear muscles have recruited an additional, faster mechanism. The proposal is made that these muscles have developed a preflex mechanism – a zero-synapse system inherent to muscle fibres which, in response to vibration, rapidly stiffens the muscles. Preflexes are a developed form of sensitivity to perturbation common to all muscles, and have recently been identified in leg muscles, for example. However, the advantages that preflexes confer to an animal’s auditory system have not yet been recognized. Applied to the middle ear muscles, heightened sensitivity to vibration means that any loud sound entering the middle ear causes the muscles to immediately stiffen, providing instant, on-the-spot overload protection. The muscles are therefore self-reflexive – they are both sensors and actuators. It is shown here how the middle ear muscles appear to have the special anatomical and physiological properties required for preflex action. There are strong resemblances to the superfast muscles of bats, birds, and fish, and to the fast flight muscles of insects.
 
REFERENCES (73)
1.
Pang XD, Peake WT. How do contractions of the stapedius muscle alter the acoustic properties of the ear? In: Allen JB, Hall JL, Hubbard AE, Neely ST, Tubis A, eds. Peripheral Auditory Mechanisms. New York: Springer; 1986. pp. 36–43.
 
2.
Møller AR. Hearing: Anatomy, physiology, and disorders of the auditory system. Second ed. Amsterdam: Academic Press; 2006.
 
3.
Bell A. How do middle ear muscles protect the cochlea? Reconsideration of the intralabyrinthine pressure theory. J Hear Sci, 2011;1(2):9-23.
 
4.
Norris TW, Stelmachowicz P, Bowling C, Taylor D. Latency measures of the acoustic reflex. Audiology 1974;13:464-9.
 
5.
Simmons FB. Perceptual theories of middle ear muscle function. Ann Otol, 1964;73:724-9.
 
6.
Loeb GE, Brown IE, Cheng EJ. A hierarchical foundation for models of sensorimotor control. Exp Brain Res, 1999;126:1-18.
 
7.
Blickhan R, Seyfarth A, Geyer H, Grimmer S, Wagner H, Gunther M. Intelligence by mechanics. Philos Trans R Soc Lond B, 2007;365:199-220.
 
8.
Sesterhenn G, Breuninger H. The acoustic reflex at low sensation levels. Audiology, 1976;15:523-33.
 
9.
Simmons FB. Middle ear muscle activity at moderate sound levels. Ann Otol Rhinol Laryngol, 1959;68:1126-43.
 
10.
Suga N, Jen PH-S. Peripheral control of acoustic signals in the auditory system of echolocating bats. J Exp Biol, 1975;62:277-311.
 
11.
Bell A. Middle ear muscle dysfunction as the cause of Meniere’s disease. J Hear Sci, 2017;7(3):9-25.
 
12.
Sataloff RT, Sataloff J, Virag TM. Diagnosing occupational hearing loss. In: Sataloff RT, Sataloff J, editors. Occupational Hearing Loss. Boca Raton, FL: CRC Press; 2006. pp. 411-40.
 
13.
Price GP. Middle ear muscle effects during gunfire noise exposure (A). J Acoust Soc Am, 1991;89:1865.
 
14.
Hyde ML, Alberti PW, Morgan PP, Symons F, Cummings F. Puretone threshold estimation from acoustic reflex thresholds: a myth? Acta Otolaryngol, 1980;89:345-57.
 
15.
Peterson JL, Liden G. Some static characteristics of the stapedial muscle reflex. Int Audiol, 1972;11:97-114.
 
16.
Jen PH-S, Suga N. Coordinated activities of middle-ear and laryngeal muscles in echolocating bats. Science, 1976;191:950-2.
 
17.
Robinson BL, McAlpine D. Gain control mechanisms in the auditory pathway. Curr Opin Neurobiol, 2009;19:402-7.
 
18.
Simmons FB. Variable nature of the middle ear muscle reflex. Int Audiol, 1964;3:136-46.
 
19.
Shearer WM. Speech: behavior of middle ear muscle during stuttering. Science, 1966;152:1280.
 
20.
Elemans CPH, Mead AF, Jakobsen L, Ratcliffe JM. Superfast muscles set maximum call rate in echolocating bats. Science, 2011;333:1885-8.
 
21.
Brown MC, Engberg I, Matthews PB. The relative sensitivity to vibration of muscle receptors of the cat. J Physiol (Lond), 1967;192:773-800.
 
22.
Goodwin GM, McCloskey DI, Matthews PBC. Proprioceptive illusions induced by muscle vibration: contribution by muscle spindles to perception? Science, 1972;175:1382-4.
 
23.
Filogamo G, Candiollo L, Rossi G. The morphology and function of auditory input control. Translations of the Beltone Institute for Hearing Research, 1967;20:1-153.
 
24.
Fallon JB, Macefield VG. Vibration sensitivity of human muscle spindles and Golgi tendon organs. Muscle Nerve, 2007;36:21-9.
 
25.
Proske U, Morgan DL, Gregory JE. Thixotropy in skeletal muscle and in muscle spindles: a review. Prog Neurobiol, 1993;41:705-21.
 
26.
Volandri G, Di Puccio F, Forte P, Carmignani C. Biomechanics of the tympanic membrane. J Biomech, 2011;44:1219-36.
 
27.
Eliasson S, Gisselsson L. Electromyographic studies of the middle ear muscles of the cat. EEG Clin Neurophysiol, 1955;7:399-406.
 
28.
Fenton RS, Smith OD. Self-induced vertigo. J Otolaryngol, 1990;19:264-6.
 
29.
Kwee HL. The occurrence of the Tullio phenomenon in congenitally deaf children. J Laryngol Otol, 1976;90:501-7.
 
30.
Hong SK, Koo J-W, Kim JS, Park M-H. Implication of vibration induced nystagmus in Meniere’s disease. Acta Otolaryngol Suppl, 2007;558:128-31.
 
31.
Nadol JB. Positive Hennebert’s sign in Meniere’s disease. Arch Otolaryngol Head Neck Surg, 1977;103:524-30.
 
32.
Nishikawa K, Biewener AA, Aerts P, Ahn AN, Chiel HJ, Daley MA, Daniel TL, Full RJ, Hale ME, Hedrick TL, Lappin AK, Nichols TR, Quinn RD, Satterlie RA, Szymick B. Neuromechanics: an integrative approach for understanding motor control. Integr Comp Biol, 2007;47:16-54.
 
33.
Tsianos GA, Loeb GE. Muscle and limb mechanics. Comprehensive Physiol, 2017;7:429-62.
 
34.
Matthews PBC, Watson JDG. Effect of vibrating agonist or antagonist muscle on the reflex response to sinusoidal displacement of the human forearm. J Physiol, 1981;321:297-316.
 
35.
Ramirez Aristeguieta LM, Ballesteros Acuna LE, Sandoval Ortiz GP. Tensor veli palatine and tensor tympani muscles: anatomical, functional and symptomatic links. Acta Otorrinolaringol Esp, 2010;61:26-33.
 
36.
Klockhoff I. Impedance fluctuation and a “tensor tympani syndrome”. Fourth International Symposium on Acoustic Impedance Measurements; Lisbon: Universidade Nova de Lisboa; 1981. pp. 69-76.
 
37.
Kierner AC, Zelenka I, Lukas JR, Aigner M, Mayr R. Observations on the number, distribution and morphological peculiarities of muscle spindles in the tensor tympani and stapedius muscle of man. Hear Res, 1999;135:71-7.
 
38.
Mukerji SM, Windsor AM, Lee DJ. Auditory brainstem circuits that mediate the middle ear muscle reflex. Trends Amplif, 2010;14:170-91.
 
39.
Klockhoff I, Anderson H. Reflex activity in the tensor tympani muscle recorded in man: preliminary report. Acta Otolaryngol, 1960;51:184-8.
 
40.
Howell P. Are two muscles needed for the normal functioning of the mammalian middle ear? Acta Otolaryngol, 1984;98:204-7.
 
41.
Mascarello F, Carpene E, Veggetti A, Rowlerson A, Jenny E. The tensor tympani muscle of cat and dog contains IIM and slow-tonic fibres: an unusual combination of fibre types. J Muscle Res Cell Motil, 1982;3:363-74.
 
42.
Azizi E, Brainerd EL, Roberts TJ. Variable gearing in pennate muscles. Proc Natl Acad Sci USA, 2008;105:1745-50.
 
43.
Han Y, Wang J, Fischman DA, Biller HF, Sanders I. Slow tonic muscle fibers in the thyroarytenoid muscles of human vocal folds: a possible specialization for speech. Anat Rec, 1999;256:146-57.
 
44.
Kierner AC, Mayer R, Kirschhofer Kv. Do the tensor tympani and tensor veli palatini muscles of man form a functional unit? Hear Res, 2002;165:48-52.
 
45.
Rome LC. Design and function of superfast muscles: new insights into the physiology of skeletal muscle. Annu Rev Physiol, 2006;68:193-221.
 
46.
Rome LC, Cook C, Syme DA, Connaughton MA, AshleyRoss M, Klimov A, Tikunov B, Goldman YE. Trading force for speed: why superfast crossbridge kinetics leads to superlow forces. Proc Nat Acad Sci, 1999;96:5826-31.
 
47.
Hartridge H. Acoustic control in the flight of bats. Nature, 1945;156:490-4.
 
48.
Griffin DR. Listening in the Dark: The acoustic orientation of bats and men. New Haven: Yale University Press; 1958.
 
49.
Veselka N, McErlain DD, Holdsworth DW, Eger JL, Chhem RK, Mason MJ, Brain KL, Faure PA, Fenton MB. A bony connection signals laryngeal echolocation in bats. Nature, 2010;463:939-42.
 
50.
Elemans CPH, Mead AF, Rome LC, Goller F. Superfast vocal muscles control song production in songbirds. PLOS One, 2008;3:e2581.
 
51.
Uchida AM, Meyers RA, Cooper BG, Goller F. Fibre architecture and song activation rates of syringeal muscles are not lateralized in the European starling. J Exp Biol, 2010;213:1069-78.
 
52.
Kever L, Boyle KS, Dragicevic B, Dulcic J, Parmentier E. A superfast muscle in the complex sonic apparatus of Ophidion rochei (Ophidiiformes): histological and physiological approaches. J Exp Biol, 2014;217:3432-40.
 
53.
Ladich F. Sound-generating and -detecting motor system in catfish: design of swimbladder muscles in doradids and pimelodids. Anat Rec, 2001;263:297-306.
 
54.
Syme DA, Josephson RK. How to build fast muscles: synchronous and asynchronous designs. Integr Comp Biol, 2002;42:762-70.
 
55.
Tawada K, Kawai M. Covalent cross-linking of single fibres from rabbit psoas increases oscillatory power. Biophys J, 1990;57:643-7.
 
56.
Roy S, VijayRaghavan K. Developmental biology: taking flight. Curr Biol, 2012;22:R63-R65.
 
57.
Marden JH. Variability in the size, composition, and function of insect flight muscles. Annu Rev Physiol, 2000;62:157-78.
 
58.
Roeder KD. Movements of the thorax and potential changes in the thoracic muscles of insects during flight. Biol Bull, 1951;100:95-106.
 
59.
Dickinson MH, Lehmann F-O, Chan WP. The control of mechanical power in insect flight. Am Zool, 1998;38:718-28.
 
60.
Dickinson MH, Tu MS. The function of dipteran flight muscle. Comp Biochem Physiol, 1997;116A:223-38.
 
61.
Vallejo LA, Herrero D, Sanchez C, Sanchez E, Gil-Carcedo E, Gil-Garcedo LM. Inverted acoustic reflex: an analysis of its morphological characteristics in different physiological and pathological situations. Acta Otorrinolaringol Esp, 2009;60:238-52.
 
62.
Gelfand SA. The contralateral acoustic reflex threshold. In: Silman S, editor. The Acoustic Reflex: Basic principles and clinical applications. Orlando FL: Academic Press; 1984. pp. 137-86.
 
63.
Lutman ME, Leis BR. Ipsilateral acoustic reflex artefacts measured in cadavers. Scand Audiol, 1980;9:33-9.
 
64.
Yavuz H, Caylakli F, Cagici CA, Yilmaz I, Atas A, Ozluoglu LN. Reversed ipsilateral acoustic reflex pattern. J Otolaryngol, 2007;36:274-81.
 
65.
Ciardo A, Garavello W, Rossetti A, Manghisi PV, Merola S, Gaini RM. The reversed ipsilateral acoustic reflex: clinical features and kinetic analysis. Acta Otolaryngol, 2003;123:65-70.
 
66.
Wang Y, Kerrick WGL. The off rate of Ca2+ from troponin C is regulated by force-generating cross bridges in skeletal muscle. J Appl Physiol, 2002;92:2409-18.
 
67.
Ciardo A, Garavello W, Leva M, Graziano B, Gaini RM. Reversed ipsilateral acoustic reflex: a study on subjects treated with muscle relaxants. Ear Hear, 2005;26:96-103.
 
68.
Kunov H. The “eardrum artifact” in ipsilateral reflex measurements. Scand Audiol, 1977;6:163-6.
 
69.
Møller AR. A comment on H. Konov: the “eardrum artifact” in ipsilateral reflex measurements. Scand Audiol, 1978;7:61-4.
 
70.
Stach BA, Jerger JF, Jenkins HA. The human acoustic tensor tympani reflex. Scand Audiol, 1984;13:93-9.
 
71.
Love JT, Stream RW. The biphasic acoustic reflex: a new perspective. Laryngoscope, 1978;88:298-313.
 
72.
Yonovitz A, Harris JD. Eardrum displacement following stapedius muscle contraction. Acta Otolaryngologica, 1976;81:1-15.
 
73.
Plester D. Surgery of Meniere’s disease. In: Pfaltz CR, editor. Controversial Aspects of Meniere’s Disease. New York: Thieme; 1986. pp. 104-12.
 
Journals System - logo
Scroll to top