ORIGINAL ARTICLE
AUDITORY ABILITIES IN INDIVIDUALS WITH AND WITHOUT FORMAL MUSICAL TRAINING
More details
Hide details
1
Department of Speech Therapy and Audiology, Universidade Federal de São Paulo, Brazil
2
Fonoaudiologia, Universidade Federal de São Paulo, Brazil
3
Departamento de Fonoaudiologia, Universidade Federal de São Paulo, Brazil
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article;
Publication date: 2021-12-03
Corresponding author
Cyntia Barbosa Luiz
Department of Speech Therapy and Audiology, Universidade Federal de São Paulo, St. Botucatu, 802, 04023-062, São Paulo, Brazil
J Hear Sci 2021;11(3):27-31
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Auditory perception can be enhanced by musical training and practice. Considering the multiple brain areas involved in musical learning, good auditory perceptual skills can contribute to phonological awareness, speech recognition in the presence of noise, reading, syllable recognition, and other language skills.
Material and methods:
There were 30 adults between 18 and 27 years old who participated. They were divided into two groups: 15 individuals without formal musical training (Non-Musicians) and 15 individuals with 5 years or more of formal musical training (Musicians), paired by gender and age. Procedures used for assessing their hearing skills were the Duration Pattern test, Staggered Spondaic Word test, Masking Level Difference test, and Dichotic Consonant–Vowel test.
Results:
In all tests, the Musicians group showed a higher average score than the Non-Musicians. In the MLD test, the average level difference was 3 dB higher for the Musicians than for the Non-Musicians (p = 0.001). There were also statistically significant mean differences between the groups for the DP test, SSW test in the right ear, and DCV test (number of errors).
Conclusions:
Individuals with formal musical training show better auditory attention abilities, which are important for developing good listening skills, resulting in good communication and linguistic performance compared to individuals without prior musical training.
REFERENCES (32)
1.
Jerger J, Musiek F. Report of the Consensus Conference on the Diagnosis of Auditory Processing Disorders in School-Age Children. J Am Acad Audiol, 2000; 11(9): 467–74.
2.
Terto SSM, Lemos SMA. Aspectos temporais auditivos: produção de conhecimento em quatro periódicos nacionais. Rev CEFAC, 2011; 13(5): 926–36.
3.
Andrade NA, Gil D, Iorio MCM. Benchmarks for the dichotic sentence identification test in Brazilian Portuguese for ear and age. Braz J Otorhinolaryngol, 2015; 81(5): 459–65.
4.
American Speech-Language-Hearing Association (ASHA). Central auditory processing disorders: The role of the audiologist (position statement). 2005. Available from <
http://www.asha.org/policy>.
5.
Talamini F, Altoè G, Carretti B, Grassi M. Musicians have better memory than non-musicians: a meta-analysis. PLoS One, 2017; 12(10): 1–21.
6.
Baeck, E. The neural networks of music. Eur J Neurol, 2002; 9(5): 449–56.
7.
Proverbio AM, Attardo L, Cozzi M, Zani A. The effect of musical practice on gesture/sound pairing. Front Psychol, 2015; 6: 376.
8.
Cohen MA, Evans KK, Horowitz TS, Wolfe JM. Auditory and visual memory in musicians and non musicians. Psych Bull Rev, 2011; 18(3): 586–91.
9.
Yates KM, Morre DR, Amitay S, Barry, JG. Sensitivity to melody, rhythm, and beat in supporting speech-in-noise perception in young adults. Ear Hear, 2019; 40: 358–67.
10.
Eugênio ML, Escalda J, Lemos SMA. Desenvolvimento cognitivo, auditivo e linguístico em crianças expostas à música: produção de conhecimento nacional e internacional. Rev CEFAC, 2012; 14(5): 992–1003.
11.
Rajendran VG, Teki S, Schnupp JWH. Temporal processing in audition: insights from music. Neurosci, 2018; 389: 4–18.
12.
Engel AC, Bueno CD, Sleifer P. Treinamento musical e habilidades do processamento auditivo em crianças: revisão sistemática. Audiol Commun Res, 2019; 24(6): 1–8.
13.
Moyeda IXG. Influencia de un entrenamiento em discriminación de estímulos tonales en la conciencia fonológica de niños pre escolares. Estudio piloto. Rev Iberoam Investig Desarro Educ, 2017; 8(15): 529–47.
14.
Casarotto FD, Vargas LS, Mello-Carpes PB. Música e seus efeitos sobre o cérebro: uma abordagem da neurociência junto a escolares. Revista ELO–Diálogos em Extensão, 2017; 6(2): 55–60.
15.
Prestes ZR, Tunes E, Pederiva PLM, Terci C. A emergência da reação estética da criança na atividade musical. Fractal Rev Psicol, 2018; 30(1): 46–57.
16.
Habibi A, Cahn BR, Damasio A, Damasio H. Neural correlates of accelerated auditory processing in children engaged in music training. Dev Cogn Neurosci, 2016; 21(5): 1–14.
17.
Madsen SMK, Whiteford KL, Oxenham AJ. Musicians do not benefit from differences in fundamental frequency when listening to speech in competing speech backgrounds. Scientific Reports, 2017; 7(1): 1–9.
18.
Kraus N, Strait DL, Slater J, O’Connell S. Music training relates to the development of neural mechanisms of selective auditory attention. Devel Cog Neurosci, 2015; 12: 94–104.
19.
Slater J, Kraus N, Carr KW, Tierney A, Azem A, Ashley R. Speechin-noise perception is linked to rhythm production skills in adult percussionists and non-musicians. Lang Cogn Neurosci, 2018; 33(6): 710–17.
20.
Boéchat EM. Sistema auditivo nervoso central: plasticidade e desenvolvimento. In: Boéchat EM, Menezes PL, Couto CM, Frizzo ACF, Scharlach RC, Anastásio ART (eds), Tratado de Audiologia, Rio de Janeiro, Santos, 2015, pp.15–20.
21.
Martins QP, Faccin VA, Brückmann M, Gil D, Garcia MV. Masking Level Difference em escolares: análise ambiental. CoDAS, 2018; 30(3): 1–7.
22.
Wilson RH, Moncrieff DW, Townsend EA, Pillion AL. Development of a 500-Hz masking-level difference protocol for clinic use. J Am Acad Audiol, 2003; 14(1): 1–8.
23.
Mendes SC, Branco-Barreiro FCA, Frota S. Limiar diferencial de mascaramento: valores de referência em adultos. Audiol Commun Res, 2017; 22: 1–5.
24.
Pereira LD, Schochat E. Testes auditivos comportamentais para avaliação do processamento auditivo central. São Paulo: Pró-Fono; 2011.
25.
Araújo NSS, Ruiz ACP, Pereira LD. SSW – análise qualitativa dos erros: inventário de atendimento de 2005. Rev CEFAC, 2009; 11(1): 44–51.
26.
Tedesco MLF. Audiometria verbal: teste dicótico consoante–vogal em escolares de 7 a 12 anos de idade [thesis]. São Paulo: Universidade Federal de São Paulo; 1995.
27.
Corazza MCA. Avaliação do Processamento Auditivo Central em adultos: testes de padrões tonais auditivos de freqüência e teste de padrões tonais auditivos de duração [thesis]. São Paulo: Universidade Federal de São Paulo; 1998.
28.
Gicov RA, Tordin GC, Santos TMM, Branco-Barreiro FCA. Limiar Diferencial de Mascaramento em Crianças de Sete a Oito Anos. Rev Equilíbrio Corporal Saúde, 2015; 7(1): 17–20.
29.
Bartz DW, Laux CN, Peruch CV, Ferreira MIDC, Machado MS, Ribas LP. Relação entre os achados do teste masking level difference e do reflexo acústico em crianças com transtorno fonológico. Rev CEFAC, 2015; 17(5): 1499–508.
30.
Carvallo RMM. Auditory process: basic audiological evaluation. In: Pereira LD, Schochat E. Processamento auditivo central: manual de avaliação. São Paulo: Lovise; 1997, 27–35.
31.
Esteves MCBN, Dell’Aringa AHB, Arruda GV, Dell’Aringa AR, Nardi JC. Brainstem evoked response audiometry in normal hearing subjects. Rev Bras Otorrinolaringol, 2009; 75(3): 420–25.
32.
Santiago JM, Luiz CBL, Garcia M, Gil D. Masking level difference and electrophysiological evaluation in adults with normal hearing. Int Arch Otorhinolaryngol, 2020; 24(4): 399–406.