ORIGINAL ARTICLE
COCHLEAR IMPLANTATION IN CHILDREN WITH ENLARGED VESTIBULAR AQUEDUCT (EVA): RELATIONSHIP TO PENDRED SYNDROME DIAGNOSIS, SURGICAL OUTCOMES, AND RADIOLOGICAL FINDINGS
,
 
Pedro Clarós 3, A-D,F-G
,
 
,
 
 
 
 
More details
Hide details
1
Department of Otorhinolaryngology, Stefan Żeromski Specialist Hospital, Cracow, Poland
 
2
Cochlear Implant Centre, Scholarship at Clarós Clinic, Barcelona, Spain
 
3
Cochlear Implant Centre, Clarós Clinic, Barcelona, Spain
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article;
 
 
Submission date: 2023-04-26
 
 
Final revision date: 2023-05-27
 
 
Acceptance date: 2023-05-31
 
 
Online publication date: 2023-07-08
 
 
Publication date: 2023-07-08
 
 
Corresponding author
Agnieszka Remjasz-Jurek   

Department of Otorhinolaryngology, Stefan Żeromski Specialist Hospital, Na Skarpie 66, 31-913, Kraków, Poland
 
 
J Hear Sci 2023;13(2):29-48
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
The cochlear implant (CI) procedure in patients with inner ear malformations is challenging. The aim of this study was to evaluate auditory perception and speech development in children with enlarged vestibular aqueduct (EVA) and to relate the results to the diagnosis of Pendred syndrome (PS), imaging findings, surgical course, and postoperative period.

Material and methods:
The study group consisted of 49 children with EVA, aged 11 months to 15 years, with severe to profound hearing loss. The EVA patients included 22 with PS and 27 with nonsyndromic EVA (NSEVA). The control group consisted of 46 children with nonsyndromic deafness. Outcomes after cochlear implantation were evaluated annually for at least 10 years. Auditory performance was assessed by categories of auditory performance (CAP) and Meaningful Auditory Integration Scale (MAIS). Speech outcomes were evaluated by Speech Intelligibility Rating Scale (SIR) and Meaning Use of Speech Scale (MUSS). Genetic counselling, imaging studies, and vestibular testing were also evaluated when available.

Results:
All patients included in the study benefited from cochlear implants, especially when implantation was performed before the age of 3 years. After CI, EVA patients (PS and NSEVA) achieved a steeper rate of increase in auditory perception and speech intelligibility, demonstrating higher scores at each follow-up point compared to nonsyndromic patients (NS). There were no differences in auditory and speech perception between NSEVA and PS patients. In addition to EVA, the most commonly diagnosed malformation was incomplete partition type 2 (IP-2), the presence of which negatively affected postoperative outcomes. During cochleostomy, cerebrospinal fluid (CSF)/perilymph leakage was observed in 50% of implanted ears, but its presence did not affect the final outcomes.

Conclusions:
Early cochlear implantation is associated with satisfactory speech and auditory development in children with EVA. Due to the presence of inner ear malformations in patients with Pendred syndrome, detailed imaging of the temporal bone is indicated. Despite the frequent occurrence of CSF/perilymph leakage during cochleostomy, patients with EVA benefit satisfactorily from cochlear implantation.

 
REFERENCES (72)
1.
Sennaroglu L. Cochlear implantation in inner ear malformations: a review article. Cochlear Implants Int, 2010; 11(1): 4–41. https://doi.org/10.1002/cii.41....
 
2.
Valvassori GE, Clemis JD. The large vestibular aqueduct syndrome. Laryngoscope, 1978; 88: 723–28.
 
3.
Forli F, Lazzerini F, Auletta G, Bruschini L, Berrettini S. Enlarged vestibular aqueduct and Mondini malformation: audiological, clinical, radiologic and genetic features. Eur Arch Otorhinolaryngol, 2021; 278(7): 2305–12. https://doi.org/10.1007/s00405....
 
4.
Ruthberg JS, Kocharyan A, Farrokhian N, Stahl MC, Hicks K, et al. Hearing loss patterns in enlarged vestibular aqueduct syndrome: do fluctuations have clinical significance? Int J Pediatr Otorhinolaryngol, 2022; 156: 111072. https://doi.org/10.1016/j.ijpo....
 
5.
Azaiez H, Yang T, Prasad S, Sorensen JL, Nishimura CJ, Kimberling WJ, et al. Genotype–phenotype correlations for SLC26A4-related deafness. Hum Genet, 2007; 122(5): 451–7. https://doi.org/10.1007/s00439....
 
6.
Roesch S, Rasp G, Sarikas A, Dossena S. Genetic determinants of nonsyndromic enlarged vestibular aqueduct: a review. Audiol Res, 2021; 11(3): 423–42. https://doi.org/10.3390/audiol....
 
7.
Aimoni C, Ciorba A, Cerritelli L, Ceruti S, Skarżyński PH, et al. Enlarged vestibular aqueduct: audiological and genetical features in children and adolescents. Int J Pediatr Otorhinolaryngol, 2017; 101: 254–8. https://doi.org/10.1016/j.ijpo....
 
8.
Saeed HS, Kenth J, Black G, Saeed SR, Stivaros S, et al. Hearing loss in enlarged vestibular aqueduct: a prognostic factor systematic review of the literature. Otol Neurotol, 2021; 42(1): 99–107. https://doi.org/10.1097/MAO.00....
 
9.
Ahadizadeh E, Ascha M, Manzoor N, Gupta A, Semaan M, et al. Hearing loss in enlarged vestibular aqueduct and incomplete partition type II. Am J Otolaryngol, 2017; 38(6): 692–7. https://doi.org/10.1016/j.amjo....
 
10.
Mey K, Bille M, Rye Rasmussen SH, Tranebjærg L, Cayé-Thomasen P. The natural history of hearing loss in Pendred syndrome and nonsyndromic enlarged vestibular aqueduct. Otol Neurotol, 2019; 40(3): 178–85. https://doi.org/10.1097/MAO.00...
 
11.
Wémeau JL, Kopp P. Pendred syndrome. Best Pract Res Clin Endocrinol Metab, 2017; 31(2): 213–24. https://doi.org/10.1016/j.beem....
 
12.
Noordman BJ, van Beeck Calkoen E, Witte B, Goverts T, Hensen E, et al. Prognostic factors for sudden drops in hearing level after minor head injury in patients with an enlarged vestibular aqueduct: a meta-analysis. Otol Neurotol, 2015; 36(1): 4–11. https://doi.org/10.1097/MAO.00....
 
13.
Sugiura M, Sato E, Nakashima T, Sugiura J, Furuhashi A, Yoshino T, et al. Long-term follow-up in patients with Pendred syndrome: vestibular, auditory and other phenotypes. Eur Arch Otorhinolaryngol, 2005; 262(9): 737–43. https://doi.org/10.1007/s00405....
 
14.
Merchant SN, Nakajima HH, Halpin C, Nadol JB Jr, Lee DJ, Innis WP, et al. Clinical investigation and mechanism of air-bone gaps in large vestibular aqueduct syndrome. Ann Otol Rhinol Laryngol, 2007; 116(7): 532–41. https://doi.org/10.1177/000348....
 
15.
Sloan-Heggen CM, Bierer AO, Shearer AE, Kolbe DL, Nishimura CJ, Frees KL, et al. Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss. Hum Genet, 2016; 135(4): 441–50. https://doi.org/10.1007/s00439....
 
16.
Mey K, Muhamad AA, Tranebjaerg L, Rendtorff ND, Rasmussen SH, Bille M, Cayé-Thomasen P. Association of SLC26A4 mutations, morphology, and hearing in Pendred syndrome and NSEVA. Laryngoscope, 2019; 129(11): 2574–9. https://doi.org/10.1002/lary.2.... PMID: 31633822.
 
17.
Dossena S, Nofziger C, Tamma G, Bernardinelli E, Vanoni S, Nowak C, et al. Molecular and functional characterization of human pendrin and its allelic variants. Cell Physiol Biochem, 2011; 28(3): 451–66. https://doi.org/10.1159/000335....
 
18.
Wangemann P. Mouse models for pendrin-associated loss of cochlear and vestibular function. Cell Physiol Biochem, 2013; 32(7): 157–65. https://doi.org/10.1159/000356....
 
19.
Yoshino T, Sato E, Nakashima T, Nagashima W, Teranishi MA, Nakayama A, et al. The immunohistochemical analysis of pendrin in the mouse inner ear. Hear Res, 2004; 195(1–2): 9–16. https://doi.org/10.1016/j.hear....
 
20.
Yoshino T, Sato E, Nakashima T, Teranishi M, Yamamoto H, Otake H, et al. Distribution of pendrin in the organ of Corti of mice observed by electron immunomicroscopy. Eur Arch Otorhinolaryngol, 2006; 263(8): 699–704. https://doi.org/10.1007/s00405....
 
21.
Wangemann P. The role of pendrin in the development of the murine inner ear. Cell Physiol Biochem, 2011; 28(3): 527–34. https://doi.org/10.1159/000335....
 
22.
Pryor SP, Madeo AC, Reynolds JC, Sarlis NJ, Arnos KS, Nance WE, et al. SLC26A4/PDS genotype–phenotype correlation in hearing loss with enlargement of the vestibular aqueduct (EVA): evidence that Pendred syndrome and nonsyndromic EVA are distinct clinical and genetic entities. J Med Genet, 2005; 42(2): 159–65. https://doi.org/10.1136/jmg.20....
 
23.
Slattery WH 3rd, Luxford WM. Cochlear implantation in the congenital malformed cochlea. Laryngoscope, 1995; 105(11): 1184–7. https://doi.org/10.1288/000055....
 
24.
Alahmadi A, Abdelsamad Y, Salamah M, Alenzi S, Badr KM, et al. Cochlear implantation in adults and pediatrics with enlarged vestibular aqueduct: a systematic review on the surgical findings and patients’ performance. Eur Arch Otorhinolaryngol, 2022; 279(12): 5497–509. https://doi.org/10.1007/s00405....
 
25.
Hansen MU, Rye Rasmussen E, Cayé-Thomasen P, Mey K. Cochlear implantation in children with enlarged vestibular aqueduct: a systematic review of surgical implications and outcomes. Ear Hear, 2023; 44(3): 440–7. https://doi.org/10.1097/AUD.00....
 
26.
Pritchett C, Zwolan T, Huq F, Phillips A, Parmar H, Ibrahim M, et al. Variations in the cochlear implant experience in children with enlarged vestibular aqueduct. Laryngoscope, 2015; 125(9): 2169–74. https://doi.org/10.1002/lary.2....
 
27.
Archibald HD, Ascha M, Gupta A, Megerian C, Otteson T. Hearing loss in unilateral and bilateral enlarged vestibular aqueduct syndrome. Int J Pediatr Otorhinolaryngol, 2019; 118: 147–51. https://doi.org/10.1016/j.ijpo....
 
28.
Cosetti M, Roland JT Jr. Cochlear implantation in the very young child: issues unique to the under-1 population. Trends Amplif, 2010; 14(1): 46–57. https://doi.org/10.1177/108471....
 
29.
Sabo DL. The audiologic assessment of the young pediatric patient: the clinic. Trends Amplif, 1999; 4(2): 51–60. https://doi.org/10.1177/108471....
 
30.
Kahue CN, Sweeney AD, Carlson ML, Haynes DS. Vaccination recommendations and risk of meningitis following cochlear implantation. Curr Opin Otolaryngol Head Neck Surg, 2014; 22(5): 359–66. https://doi.org/10.1097/MOO.00....
 
31.
Archbold S, Lutman ME, Marshall DH. Categories of auditory performance. Ann Otol Rhinol Laryngol Suppl, 1995; 166: 312–4.
 
32.
Allen C, Nikolopoulos TP, Dyar D, O’Donoghue GM. Reliability of a rating scale for measuring speech intelligibility after pediatric cochlear implantation. Otol Neurotol, 2001; 22(5): 631–3. https://doi.org/10.1097/001294....
 
33.
Robbins AM, Renshaw JJ, Berry SW. Evaluating meaningful auditory integration in profoundly hearing-impaired children. Am J Otol, 1991; 12 Suppl: 144–50. PMID: 2069175
 
34.
Robbins AM, Osberger MJ. Meaningful Use of Speech Scale. Indianapolis: Indiana University School of Medicine Press, 1991.
 
35.
Benchetrit L, Jabbour N, Appachi S, Liu YC, Cohen MS, Anne S. Cochlear implantation in pediatric patients with enlarged vestibular aqueduct: a systematic review. Laryngoscope, 2022; 132(7): 1459–72. https://doi.org/10.1002/lary.2....
 
36.
Grover M, Sharma S, Bhargava S, Singh SN, Gupta G, Sharma MP. Cochlear implantation in children with anomalous cochleovestibular anatomy: our experience. Indian J Otolaryngol Head Neck Surg, 2017; 69(4): 504–8. https://doi.org/10.1007/s12070....
 
37.
Clarós P, Fokouo JV, Clarós A. Cochlear implantation in patients with enlarged vestibular aqueduct. A case series with literature review. Cochlear Implants Int, 2017; 18(3): 125–9. https://doi.org/10.1080/146701....
 
38.
Fahy CP, Carney AS, Nikolopoulos TP, Ludman CN, Gibbin KP. Cochlear implantation in children with large vestibular aqueduct syndrome and a review of the syndrome. Int J Pediatr Otorhinolaryngol, 2001; 2; 59(3): 207–15. https://doi.org/10.1016/s0165-....
 
39.
Miyamoto RT, Kirk KI, Robbins AM, Todd S, Riley A. Speech perception and speech production skills of children with multichannel cochlear implants. Acta Otolaryngol, 1996; 116(2): 240–3. https://doi.org/10.3109/000164....
 
40.
Cullen RD, Higgins C, Buss E, Clark M, Pillsbury HC 3rd, Buchman CA. Cochlear implantation in patients with substantial residual hearing. Laryngoscope, 2004; 114(12): 2218–23. https://doi.org/10.1097/01.mlg....
 
41.
Nikolopoulos TP, O’Donoghue GM, Archbold S. Age at implantation: its importance in pediatric cochlear implantation. Laryngoscope, 1999; 109(4): 595–9. https://doi.org/10.1097/000055....
 
42.
Niparko JK, Tobey EA, Thal DJ, Eisenberg LS, Wang NY, Quittner AL, et al. Spoken language development in children following cochlear implantation. JAMA, 2010; 21; 303(15): 1498–506. https://doi.org/10.1001/jama.2....
 
43.
Papsin BC. Cochlear implantation in children with anomalous cochleovestibular anatomy. Laryngoscope, 2005; 115(Suppl 106): 1–26. https://doi.org/10.1097/000055....
 
44.
Kileny PR, Zwolan TA, Ashbaugh C. The influence of age at implantation on performance with a cochlear implant in children. Otol Neurotol, 2001; 22(1): 42–6. https://doi.org/10.1097/001294....
 
45.
Richter B, Eissele S, Laszig R, Löhle E. Receptive and expressive language skills of 106 children with a minimum of 2 years’ experience in hearing with a cochlear implant. Int J Pediatr Otorhinolaryngol, 2002; 17; 64(2): 111–25. https://doi.org/10.1016/s0165-....
 
46.
Eggermont JJ, Ponton CW. Auditory-evoked potential studies of cortical maturation in normal hearing and implanted children: correlations with changes in structure and speech perception. Acta Otolaryngol, 2003; 123(2): 249–52. https://doi.org/10.1080/003655....
 
47.
Sharma A, Dorman MF. Central auditory development in children with cochlear implants: clinical implications. Adv Otorhinolaryngol, 2006; 64: 66–88. https://doi.org/10.1159/000094....
 
48.
Geers AE, Nicholas JG. Enduring advantages of early cochlear implantation for spoken language development. J Speech Lang Hear Res, 2013; 56(2): 643–55. https://doi.org/10.1044/1092-4...)
 
49.
van Nierop JW, Huinck WJ, Pennings RJ, Admiraal RJ, Mylanus EA, Kunst HP. Patients with Pendred syndrome: is cochlear implantation beneficial? Clin Otolaryngol, 2016; 41(4): 386–94. https://doi.org/10.1111/coa.12....
 
50.
McKay CM. Brain plasticity and rehabilitation with a cochlear implant. Adv Otorhinolaryngol, 2018; 81: 57–65. https://doi.org/10.1159/000485....
 
51.
Dettman SJ, Dowell RC, Choo D, Arnott W, Abrahams Y, Davis A, et al. Long-term communication outcomes for children receiving cochlear implants younger than 12 months: a multicenter study. Otol Neurotol, 2016; 37(2): e82–95. https://doi.org/10.1097/MAO.00....
 
52.
Demir B, Cesur S, Incaz S, Alberalar ND, Ciprut A, Batman C. The effect of canal diameter on audiologic results in patients with cochlear implantation with large vestibular aqueduct syndrome. Eur Arch Otorhinolaryngol, 2020; 277(3): 743–50. https://doi.org/10.1007/s00405....
 
53.
Colvin IB, Beale T, Harrop-Griffiths K. Long-term follow-up of hearing loss in children and young adults with enlarged vestibular aqueducts: relationship to radiologic findings and Pendred syndrome diagnosis. Laryngoscope, 2006; 116(11): 2027–36. https://doi.org/10.1097/01.mlg....
 
54.
Ronner E, Basonbul R, Bhakta R, Mankarious L, Lee DJ, Cohen MS. Impact of cochlear abnormalities on hearing outcomes for children with cochlear implants, Am J Otolaryngol, 2020; 41(2): 102372. https://doi.org/10.1016/j.amjo....
 
55.
Sweetow RW, Rosbe KW, Philliposian C, Miller MT. Considerations for cochlear implantation of children with sudden, fluctuating hearing loss. J Am Acad Audiol, 2005; 16(10): 770–80. https://doi.org/10.3766/jaaa.1....
 
56.
Gratacap M, Thierry B, Rouillon I, Marlin S, Garabedian N, Loundon N. Pediatric cochlear implantation in residual hearing candidates. Ann Otol Rhinol Laryngol, 2015; 124(6): 443–51. https://doi.org/10.1177/000348....
 
57.
Mikkelsen KS, Tranebjærg L, Mey K. Cochlear implantation in a 10-year old boy with Pendred syndrome and extremely enlarged endolymphatic sacs. Cochlear Implants Int, 2019; 20(2): 100–3. https://doi.org/10.1080/146701....
 
58.
Mori T, Westerberg BD, Atashband S, Kozak FK. Natural history of hearing loss in children with enlarged vestibular aqueduct syndrome. J Otolaryngol Head Neck Surg, 2008; 37(1): 112–8.
 
59.
Ko HC, Liu TC, Lee LA, Chao WC, Tsou YT, Ng SH, et al. Timing of surgical intervention with cochlear implant in patients with large vestibular aqueduct syndrome. PLoS One, 2013; 25; 8(11): e81568. https://doi.org/10.1371/journa....
 
60.
Park JH, Kim AR, Han JH, Kim SD, Kim SH, Koo JW, et al. Outcome of cochlear implantation in prelingually deafened children according to molecular genetic etiology. Ear Hear, 2017; 38(5): e316–e324. https://doi.org/10.1097/AUD.00....
 
61.
Yan YJ, Li Y, Yang T, Huang Q, Wu H. The effect of GJB2 and SLC26A4 gene mutations on rehabilitative outcomes in pediatric cochlear implant patients. Eur Arch Otorhinolaryngol, 2013; 270(11): 2865–70. https://doi.org/10.1007/s00405....
 
62.
Buchman CA, Copeland BJ, Yu KK, Brown CJ, Carrasco VN, Pillsbury HC. Cochlear implantation in children with congenital inner ear malformations. Laryngoscope, 2004; 114(2): 309–16. https://doi.org/10.1097/000055....
 
63.
Wu CC, Lee YC, Chen PJ, Hsu CJ. Predominance of genetic diagnosis and imaging results as predictors in determining the speech perception performance outcome after cochlear implantation in children. Arch Pediatr Adolesc Med, 2008; 162(3): 269–76. https://doi.org/10.1001/archpe....
 
64.
Palabiyik FB, Hacikurt K. Temporal high-resolution computed tomography and magnetic resonance imaging of congenital inner ear anomalies in children. J Craniofac Surg, 2016; 27(7): e632–e636. https://doi.org/10.1097/SCS.00....
 
65.
Joshi VM, Navlekar SK, Kishore GR, Reddy KJ, Kumar EC. CT and MR imaging of the inner ear and brain in children with congenital sensorineural hearing loss. Radiographics. 2012; 32(3): 683–98. https://doi.org/10.1148/rg.323....
 
66.
Karamert R, Tutar H, Altinyay Ş, Düzlü M, Yildiz M, et al. Cochlear implantation in inner ear malformations: considerations related to surgical complications and communication skills. ORL J Otorhinolaryngol Relat Spec, 2022; 84(3): 211–18. https://doi.org/10.1159/000517....
 
67.
Demir B, Cesur S, Sahin A, Binnetoglu A, Ciprut A, et al. Outcomes of cochlear implantation in children with inner ear malformations. Eur Arch Otorhinolaryngol, 2019; 276(9): 2397–403. https://doi.org/10.1007/s00405....
 
68.
Farhood Z, Nguyen SA, Miller SC, Holcomb MA, Meyer TA, et al. Cochlear implantation in inner ear malformations: systematic review of speech perception. Outcomes and intraoperative findings. Otolaryngol Head Neck Surg, 2017; 156(5): 783–93. https://doi.org/10.1177/019459....
 
69.
Dettman S, Sadeghi-Barzalighi A, Ambett R, Dowell R, Trotter M, Briggs R. Cochlear implants in forty-eight children with cochlear and/or vestibular abnormality. Audiol Neurootol, 2011; 16(4): 222–32. https://doi.org/10.1159/000320....
 
70.
Pakdaman MN, Herrmann BS, Curtin HD, Van Beek-King J, Lee DJ. Cochlear implantation in children with anomalous cochleovestibular anatomy: a systematic review. Otolaryngol Head Neck Surg, 2012; 146(2): 180–90. https://doi.org/10.1177/019459....
 
71.
Loundon N, Rouillon I, Munier N, Marlin S, Roger G, Garabedian EN. Cochlear implantation in children with internal ear malformations. Otol Neurotol, 2005; 26(4): 668–73. https://doi.org/10.1097/01.mao....
 
72.
Geers AE, Strube MJ, Tobey EA, Pisoni DB, Moog JS. Epilogue: factors contributing to long-term outcomes of cochlear implantation in early childhood. Ear Hear, 2011; 32(Suppl 1): 84S–92S. https://doi.org/10.1097/AUD.0b....
 
Journals System - logo
Scroll to top