ORIGINAL ARTICLE
EFFECT OF SOUND INTENSITY ON LEVEL OF ACTIVATION IN AUDITORY CORTEX AS MEASURED BY FMRI
Tomasz Wolak 1, A-F
,
 
,
 
Joanna Wojcik 1, B,E
,
 
 
 
 
More details
Hide details
1
World Hearing Center, Institute of Physiology and Pathology of Hearing, 10 Mochnackiego Street, 02-042 Warszawa, Poland
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article;
 
 
Publication date: 2017-12-31
 
 
Corresponding author
Tomasz Wolak   

Tomasz Wolak, Bioimaging Research Center, World Hearing Center , Institute of Physiology and Pathology of Hearing, 10 Mochnackiego Street, 02-042 Warszawa, Poland, Phone: +48223560349, Email: t.wolak@ifps.org.pl
 
 
J Hear Sci 2017;7(4):20-27
 
KEYWORDS
ABSTRACT
Background:
Despite rapid developments in fMRI, there is still ongoing debate on the optimal paradigm for evaluating the level of auditory cortex activation.

Material and Methods:
A number of modern neuroimaging methods can be used to assess brain responses to acoustic stimulation, but new paradigms are still needed. Here the sparse fMRI approach is used to examine frequency-specific activation in auditory cortex in 12 normal hearing individuals.

Results:
The size of activation expanded with increasing sound intensity and decreasing sound frequency. At the same time, the main site of frequency-specific activation remained the same across intensities, indicating fixed tonotopic organization. The findings of the study are explained in terms of basilar membrane phenomena such as the travelling wave pattern and spread of activation.

Conclusions:
Stimulation levels of at least 60 dB are necessary in order to obtain robust maps of group activation in auditory cortex.
FUNDING
This work was supported by Polish National Science Center grant 2012/05/N/NZ4/02 awarded to Dr. Katarzyna Cieśla
REFERENCES (49)
1.
Wolak T, Cieśla K, Lorens A, Kochanek K, Lewandowska M, Rusiniak M, Pluta A, Wójcik J, Skarżyński H. Tonotopic organisation of the auditory cortex in sloping sensorineural hearing loss. Hear Res 2017;355:81–96.
 
2.
Woods DL, Stecker GC, Rinne T, Herron TJ, Cate AD, Yund EW, Liao I, Kang X. Functional maps of human auditory cortex: effects of acoustic features and attention. PloS One 2009;4(4):e5183.
 
3.
Saenz M, Langers DRM. Tonotopic mapping of human auditory cortex. Hear Res 2014; 307:42-52.
 
4.
Jaencke L, Shah J, Posse S, Grosse-Ryuken R, Mueller-Gaertner HU. Intensity coding of auditory stimuli. Neuropsychol 1998;38(9):875-883.
 
5.
Langers DR, van Dijk P, Schoenmaker ES, Backes WH. fMRI activation in relation to sound intensity and loudness. Neuroimage 2007;35(2),709-718.
 
6.
Hart H, Palmer A, Hall D. Heschl’s gyrus is more sensitive to tone level than non-primary auditory cortex. Hear Res 2002;171:177-179.
 
7.
Brechmann A, Baumgart F, Scheich H. Sound-level-dependent representation of frequency modulations in human auditory cortex: a low-noise fMRI study. J Neurophysiol 2002;87(1):423-433.
 
8.
Woods DL, Alain C. Functional imaging of human auditory cortex. Curr Opin Otolaryngol. Head Neck Surg 2009;17:407–411.
 
9.
Sigalovsky IS, Melcher JR. Effects of sound level on fMRI activation in human brainstem, thalamic and cortical centers. Hear Res 2006;215:67–76.
 
10.
Recanzone GH, Guard DC, Phan ML. Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. J Neurophysiol 2000;83:2315–2331.
 
11.
Tsukano H, Horie M, Ohga S, Takahashi K, Kubota Y, Hishida R, Takebayashi H, Shibuki K.Reconsidering tonotopic maps in the auditory cortex and lemniscal auditory thalamus in mice. Front Neural Circuits 2017;11:14.
 
12.
Ravicz ME, Melcher JR, Kiang NY. Acoustic noise during functional magnetic resonance imaging. J. Acoust. Soc Am 2000,108,1683–1696.
 
13.
Formisano E, Kim DS, Di Salle F, van de Moortele PF, Ugurbil K, Goebel R. Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 2003,40,859–869.
 
14.
Langers DR, van Dijk P. Mapping the tonotopic organisation in human auditory cortex with minimally salient acoustic stimulation, Cereb Cortex 2011,22,2024–2038.
 
15.
Edmister WB, Talavage TM, Ledden PJ, Weisskoff RM. Improved auditory cortex imaging using clustered volume acquisitions. Hum Brain Map 1999;7(2):89-97.
 
16.
Hall DA, Haggard MP, Akeroyd MA, Palmer AR, Summerfield AQ, Elliot MR, Gurney EM, Bowtell RW. “Sparse” temporal sampling in auditory fMRI. HBM 1999,7,213-223.
 
17.
Burton H, Firszt JB, Holden T, Agato A, Uchanski RM. Activation lateralization in human core, belt, and parabelt auditory fields with unilateral deafness compared to normal hearing. Brain Res 2012,1454,33-47.
 
18.
Herdener M, Esposito F, Scheffler K, Schneider P, Logothetis NK, Uludag K, Kayser C. Spatial representations of temporal and spectral sound cues in human auditory cortex. Cortex 2013;49(10):2822-2833.
 
19.
Humphries C, Liebenthal E, Binder JR. Tonotopic organisation of human auditory cortex. Neuroimage 2010;50(3):1202-1211.
 
20.
Langers DR, Sanchez-Panchuelo RM, Francis ST, Krumbholz K, Hall DA. Neuroimaging paradigms for tonotopic mapping (II): the influence of acquisition protocol. Neuroimage 2014,100,663-675.
 
21.
Langers DR, Backes WH, van Dijk P. Spectrotemporal features of the auditory cortex: the activation in response to dynamic ripples, Neuroimage 2003,20,265–275.
 
22.
Rauschecker JP, Tian B. Mechanisms and streams for processing of “what” and “where” in auditory cortex. PNAS 2000,97(22),11800–11806.
 
23.
Wessinger CM, VanMeter J, Tian B, Van Lare J, Pekar J, Rauschecker JP. Hierarchical organisation of the human auditory cortex revealed by functional magnetic resonance imaging. J Cogn Neurosci. 2001,13(1),1-7.
 
24.
Hertz U, Amedi A. Disentangling unisensory and multisensory components in audiovisual integration using a novel multifrequency fMRI spectral analysis. Neuroimage 2010,52(2),617-632.
 
25.
Striem-Amit E, Hertz U, Amedi A. Extensive cochleotopic mapping of human auditory cortical fields obtained with phase-encoded fMRI. PLoS One 2011,6,e17832.
 
26.
Shaffer JP. Multiple hypothesis testing. Ann Rev Psychol 1995,46:561-584.
 
27.
Seifritz E, Di Salle F, Esposito F, Herdener M, Neuhoff JG, Scheffler K. Enhancing BOLD response in the auditory system by neurophysiologically tuned fMRI sequence. Neuroimage 2006,29(3),1013-1022.
 
28.
Barton B, Venezia JH, Saberi K, Hickok G, Brewer AA. Orthogonal acoustic dimensions define auditory field maps in human cortex. Proc Natl Acad Sci USA 2012,109(50),20738-20743.
 
29.
Da Costa S, van der Zwaag W, Marques JP, Frackowiak RSJ, Clarke S, Saenz M, Human primary auditory cortex follows the shape of Heschl’s gyrus. J Neurosci 2011,31,14067–14075.
 
30.
Da Costa S, van der Zwaag W, Miller LM, Clarke S, Saenz M. Tuning into sound: frequency-selective attentional filtering in human primary auditory cortex. J Neurosci 2013,33(5),1858-1863.
 
31.
Moerel M, DeMartino F, Formisano E. Processing of Natural Sounds in Human Auditory Cortex: Tonotopy, Spectral Tuning, and Relation to Voice Sensitivity. J Neurosci 2012, 32(41),14205–14216.
 
32.
Hamill T, Price L. The Hearing Sciences. Plural Publishing; 2008.
 
33.
van Békésy G. Some biophysical experiments from fifty years ago. Ann Rev Physiol 1974,36,1-18.
 
34.
Moore BCJ, Glasberg BR, Baer T. A model for the prediction of thresholds, loudness and partial loudness. J Audio Eng Soc 1997,45,224-240.
 
35.
Rees G, Friston K, Koch C. A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci 2000,3,716–723.
 
36.
Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA, 1992,89,5951–5955.
 
37.
Langers DR, van Dijk P, Backes WH. Interactions between hemodynamic responses to scanner acoustic noise and auditory stimuli in functional magnetic resonance imaging. Magn Reson Med 2005,53(1),49-60.
 
38.
Glasberg BR, Moore BCJ. Frequency selectivity as a function of level and frequency measured with uniformly exciting notched noise. J Acoust Soc Am 2000,108:2318–2328.
 
39.
Lutfi RA, Patterson RD. On the growth of masking asymmetry with stimulus intensity. J Acoust Soc Am 1984,t.76,739–745.
 
40.
Patterson RD, Moore BCJ. Auditory filters and excitation patterns as representations of frequency resolution, in Frequency Selectivity in Hearing. London, BCJ Moore Academic, 1986.
 
41.
Moore BCJ, Glasberg BR. Formulae describing frequency selectivity as a function of frequency and level and their use in calculating excitation patterns. Hear Res 1987,28,209–225.
 
42.
Glasberg BR, Moore BCJ. Derivation of auditory filter shapes from notched-noise data. Hear Res 1990,47,103–138.
 
43.
Rosen S, Baker RJ, Kramer S. Characterizing changes in auditory filter bandwidth as a function of level. Auditory Physiology and Perception, Pergamon Oxford edited by Cazals Y, Horner K, Demany L. 1992.
 
44.
Rosen S, Baker .J, Darling A. Auditory filter nonlinearity at 2 kHz in normal hearing listeners. J Acoust Soc Am 1998,103,2539–2550.
 
45.
Schonwiesner M, von Cramon DY, Rubsamen R. Is it tonotopy after all? Neuroimage 2002,17(3),1144–1161.
 
46.
Paltoglou AE, Christian J, Sumner A, Deborah A. Hall Examining the role of frequency specificity in the enhancement and suppression of human cortical activity by auditory selective attention. Hearing Research 2009, 257,106–118.
 
47.
Talavage TM, Sereno MI, Melcher JR, Ledden PJ, Rosen BR, Dale AM. Tonotopic organisation in human auditory cortex revealed by progressions of frequency sensitivity. J Neurophysiol 2004,91(3),1282–1296.
 
48.
Scarff CJ, Dort JC, Eggermont JJ, Goodyear BG. The Effect of MR Scanner Noise on Auditory Cortex Activity using fMRI. HBM; 2004,22,341–349.
 
49.
Skarżyński PH, Wolak T, Skarżyński H, Lorens A, Śliwa L, Rusiniak M, Pluta A, Lewandowska M, Ciesla K, Jędrzejczak WW, Olszewski Ł. Application of the functional magnetic resonance imaging fMRI for the assessment of the primary auditory cortex function in partial deafness patients: a preliminary study. Int Adv Otol 2013,9(2),153-160.
 
Journals System - logo
Scroll to top