ORIGINAL ARTICLE
MORPHOLOGICAL VARIANCE AND RELATED TAXONOMY OF THE PLANUM TEMPORALE
Bryan M. Wong 1, A-F
,
 
Frank E. Musiek 1, A,D-E,G
 
 
 
More details
Hide details
1
Speech, Language, and Hearing Sciences, The University of Arizona, United States
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article;
 
 
Submission date: 2020-05-22
 
 
Final revision date: 2020-08-10
 
 
Acceptance date: 2020-10-16
 
 
Publication date: 2020-12-31
 
 
Corresponding author
Bryan M. Wong   

Speech, Language, and Hearing Sciences, The University of Arizona, 1131 E. 2nd St., 85721, Tucson, United States
 
 
J Hear Sci 2020;10(4):9-19
 
KEYWORDS
TOPICS
ABSTRACT
Background:
The planum temporale (PT) is well known for its classic “pie-shaped” morphology. The aim of this study is to create a taxonomy of PT morphological features to improve its sometimes difficult identification and differentiation from surrounding structures.

Material and methods:
A total of 50 normal, high-resolution T1-weighted brain MRIs (100 hemispheres) were obtained from the Open Access Series of Imaging Studies (OASIS) repository. Ages ranged from 18 to 57 years.

Methods:
A 3D cortical surface mesh (grey matter) was generated using neuroimaging software. The PT was isolated based on pre-defined criteria and stratified into different classifications. Quantitative measurements were also taken.

Results:
A total of four PT configurations were identified: (1) Pie-shaped [45%], 508.8 mm2; (2) Trapezoid-shaped [27%], 540.4 mm2, (3) Rectangular-shaped [19%], 477.7 mm2; and (4) Amorphous/none [9%], not calculable. The trapezoid-shaped PT category occurred significantly more often in females.

Conclusions:
The proposed classification is the first step in creating a comprehensive.

 
REFERENCES (85)
1.
Rademacher J, Caviness Jr. VS, Steinmetz H, Galaburda AM. Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex, 1993; 3(4): 313–29.
 
2.
Shapleske J, Rossell SL, Woodruff PWR, David AS. The planum temporale: A systematic, quantitative review of its structural, functional and clinical significance. Brain Res Rev, 1999; 29(1): 26–49.
 
3.
Kulynych JJ, Vladar K, Jones DW, Weinberger DR. Three-dimensional surface rendering in MRI morphometry: a study of the planum temporale. J Comput Assist Tomogr, 1993; 17(4): 529–35.
 
4.
Geschwind N, Levitsky W. Human brain: left–right asymmetries in temporal speech region. Science, 1968; 161(3837): 186–7.
 
5.
Galaburda AM, Corsiglia J, Rosen GD, Sherman GF. Planum temporale asymmetry, reappraisal since Geschwind and Levitsky. Neuropsychologia, 1987; 25(6): 853–68.
 
6.
Hall DA, Hart HC, Johnstrude IS. Relationships between human auditory cortical structure and function. Audiol Neurotol, 2003; 8: 1–18.
 
7.
Hackett TA, Preuss TM, Kass JH. Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol, 2001; 441: 197–222.
 
8.
Warrier C, Wong P, Penhune V, Zatorre R, Parrish T, Abrams D, Kraus NC. Relating structure to function: Heschl’s gyrus and acoustic processing. J Neurosci, 2009; 29(1): 61–9.
 
9.
Leonard CM, Pranik C, Kuldau JM, Lombardino LJ. Normal variation in the frequency and location of human auditory cortex landmarks. Heschl’s gyrus: where is it? Cereb Cortex, 1998; 8(5): 397–406.
 
10.
Brodmann K. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Barth; 1909.
 
11.
Von Economo CF, Koskinas GN. Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Berlin: Springer; 1925.
 
12.
Galaburda AM, Sanides F. Cytoarchitectonic organization of the human auditory cortex. J Comp Neurol, 1980; 190(3): 597–610.
 
13.
Witelson SF, Glezer II, Kigar DL. Women have greater density of neurons in posterior temporal cortex. J Neurosci, 1995; 15(5): 3418–28.
 
14.
Galaburda AM, Sanides F, Geschwind N. Human brain: cytoarchitectonic left–right asymmetries in the temporal speech region. Arch Neurol, 1978; 35(12): 812–7.
 
15.
Pfeifer RA. Myelogenetisch-anatomische Untersuchungen über das kortikale Ende der Hörleitung. BG Teubner; 1920.
 
16.
Von Economo C, Horn L. Über Windungsrelief, Maße und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede. Neurologie und Psychiatrie, 1930; 130: 678–757.
 
17.
Penhune VB, Zatorre RJ, MacDonald JD, Evans AC. Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex, 1996; 6(5): 661–72.
 
18.
Vouloumanos A, Kiehl KA, Werker JF, Liddle PF. Detection of sounds in the auditory stream: event-related fMRI evidence for differential activation to speech and nonspeeech. J Cogn Neurosci, 2001; 13(7): 994–1005.
 
19.
Zatorre RJ, Evans AC, Meyer E, Gjedde A. Lateralization of phonetic and pitch discrimination in speech processing. Science, 1992; 256(5058): 846–9.
 
20.
Papoutis M, deZwart JA, Jansma JM, Pickering MJ, Bednar JA, Horwitz B. From phonemes to articulatory codes: an fMRI study of the role of Broca’s area in speech production. Cereb Cortex, 2009; 19(9): 2156–65.
 
21.
Koelsch S, Schulze K, Sammier D, Fritz T, Müller K, Gruber,O. Functional architecture of verbal and tonal working memory: an FMRI study. Hum Brain Mapp, 2009; 30(3): 859–73.
 
22.
Thivard L, Belin P, Zilbovicius M, Poline JB, Samson Y. A cortical region sensitive to auditory spectral motion. Neuroreport, 2000; 11(13): 2969–72.
 
23.
Bremmer B, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann KP, Ziles K, Fink KR. Polymodal motion processing in posterior parietal and premotor cortex. Neuron, 2001; 29: 287–96.
 
24.
Warren JD, Zielinski BA, Green GR, Rauschecker JP, Griffiths TD. Perception of sound-source motion by the human brain. Neuron, 2002; 34(1): 139–48.
 
25.
Griffiths TD, Johnsrude I, Dean JL, Green GG. A common neural substrate for the analysis of pitch and duration pattern in segmented sound? Neuroreport, 1999; 10(18): 3825–30.
 
26.
Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Springer JA, Kaufman JN, Possing ET. Human temporal lobe activation by speech and nonspeech sounds. Cereb Cortex, 2000; 10: 512–28.
 
27.
Hall DA, Johnsrude IS, Haggard MP, Palmer AR, Akeroyd MA, Summerfield AQ. Spectral and temporal processing in human auditory cortex. Cereb Cortex, 2002; 12: 140–9.
 
28.
Hugdahl K, Brønnick K, Kyllingsbæk S, Law I, Gade A, Paulson OB. Brain activation during dichotic presentations of consonant–vowel and musical instrument stimuli: a 15O-PET study. Neuropsychologia, 1999; 37:431–40.
 
29.
Hashimoto R, Homae F, Nakajima K, Miyashita Y, Sakai KL. Functional differentiation in the human auditory and language areas revealed by a dichotic listening task. NeuroImage, 2000; 12: 147–58.
 
30.
Van den Noort M, Specht K, Rimol LM, Ersland L, Hugdahl K. A new verbal reports fMRI dichotic listening paradigm for studies of hemispheric asymmetry. Neuroimage, 2008; 40: 902–11.
 
31.
Ocklenburg S, Friedrich P, Fraenz C, Schlüter C, Beste C, Güntürkün O, Genç E. Neurite architecture of the planum temporale predicts neurophysiological processing of auditory speech. Science Advances, 2018; 4(7): 1–9.
 
32.
Hickok G, Okada K, Serences JT. Area Spt in the human planum temporale supports sensory–motor integration for speech processing. J Neurophysiol, 2009; 101: 2725–32.
 
33.
Obleser J, Kotz SA. Expectancy constraints in degraded speech modulate the language comprehension network. Cereb Cortex, 2010; 20(3): 633–40.
 
34.
Price CJ. The anatomy of language: a review of 100 fMRI studies published in 2009. Ann N Y Acad Sci, 2010; 1191(1): 62–88.
 
35.
Deschamps I, Tremblay P. Sequencing at the syllabic and suprasyllabic levels during speech perception: an fMRI study. Front Hum Neurosci, 2014; 8: 492–5.
 
36.
Naeser MA, Helm-Estabrooks N, Haas G, Auerbach S, Srinivasan M. Relationship between lesion extent in ‘Wernicke’s area’ on computed tomographic scan and predicting recovery of comprehension in Wernicke’s aphasia. Arch Neurol, 1987; 44(1): 73–82.
 
37.
Dronkers NF, Wilkins DP, Van Valin Jr. RD, Redfern BB, Jaeger JJ. Lesion analysis of the brain areas involved in language comprehension. Cognition, 2004; 92(1): 145–77.
 
38.
Kim WJ, Paik NJ. Lesion localization of global aphasia without hemiparesis by overlapping of the brain magnetic resonance images. Neural Regen Res, 2014; 9(23): 2081–6.
 
39.
Bender LC, Linnau KF, Meier EN, Anzai Y, Gunn ML. Interrater agreement in the evaluation of discrepant imaging findings with the Radpeer system. Am J Roentgenol, 2012; 199: 1320–7.
 
40.
Abujudeh HH, Kaewlai R, Asfaw BA, Thrall JH. Quality initiatives: key performance indicators for measuring and improving radiology department performance. RadioGraphics, 2010; 30(3): 571–80.
 
41.
Chow L, Rajagopal H, Paramesran R. Correlation between subjective and objective assessment of magnetic resonance (MR) images. Magnetic Resonance Imaging, 2016; 34: 820–31.
 
42.
Krupinski EA, Jiang Y. Evaluation of medical imaging systems. Med Phys, 2008; 35(2): 645–59.
 
43.
Krupinski EA. Improving patient care through medical image perception research. Policy Insights from the Behavioral and Brain Sciences, 2015; 2(1): 74–80.
 
44.
St. George B, DeMarco AT, Musiek F. Modern views on the anatomy of planum temporale (poster). 29th Annual AudiologyNOW! Meeting, Indianopolis, IN; 2017.
 
45.
Marie D, Jobard G, Crivello F, et al. Descriptive anatomy of Heschl’s gyri in 430 healthy volunteers, including 198 left-handers. Brain Structure and Function, 2015; 220(2): 729–43.
 
46.
Musiek FE, Baran JA. The Auditory System: Anatomy, physiology and clinical correlates (2nd ed.). San Diego, CA: Plural Publishing; 2020.
 
47.
Binder JR, Frost JA, Hammeke TA, Rao SM, Cox, RW. Function of the left planum temporale in auditory and linguistic processing. Brain, 1996; 119: 1239–47.
 
48.
Pahs G, Rankin P, Cross JH, et al. Asymmetry of planum temporale constrains interhemispheric language plasticity in children with focal epilepsy. Brain, 2013; 136(10): 3163–75.
 
49.
Altarelli I, Leroy F, Monzalvo K, et al. Planum temporale asymmetry in developmental dyslexia: revisiting an old question. Human Brain Mapping, 2014; 35(12): 5717–35.
 
50.
Teszner D, Tzavaras A, Gruner J, Hecaen H. L’asymétrie droite– gauche du planum temporale; à propos de l’étude anatomique de 100 cerveaux. Revue Neurologique, 1972; 126: 444–9.
 
51.
Kopp N, Michel F, Carrier H, Biron A, Duvillard P. Étude de certaines asymmétries hémisphériques du cerveau humain. Journal of the Neurological Sciences, 1977; 34: 349–63.
 
52.
Falzi G, Perrone P, Vignolo LA. Right–left asymmetry in the anterior speech region. Arch Neurol, 1982; 39: 239–40.
 
53.
Nikkuni S, Yashima Y, Ishige K, et al. Left–right hemispheric asymmetry of cortical speech zones in Japanese brains. No To Shinkei, 1981; 33(1): 77–84.
 
54.
Musiek FE, Reeves AG. Asymmetries of the auditory areas of the cerebrum. J Am Acad Audiol, 1990; 1: 240–5.
 
55.
Witelson SF, Pallie W. Left hemisphere specialization for language in the newborn: neuroanatomical evidence of asymmetry. Brain, 1973; 96(3): 641–6.
 
56.
Wada JA, Clarke R, Hamm A. Cerebral hemispheric asymmetry in humans: cortical speech zones in 100 adults and 100 infants. Arch Neurol, 1975; 32(4): 239–46.
 
57.
Foundas AL, Leonard CM, Gilmore R, Fennell E, Heiman K. Planum temporale asymmetry and language dominance. Neuropsychologia, 1994; 37(10): 1225–31.
 
58.
Foundas A, Leonard CM, Heilman KM. Morphologic cerebral asymmetries and handedness: The pars triangularis and planum temporale. Arch Neurol, 1995; 52(5): 501–8.
 
59.
Barta PE, Petty RG, McGilchrist I, et al. Asymmetry of the planum temporale: methodological considerations and clinical associations. Psychiatry Research: Neuroimaging, 1995; 61(3): 137–50.
 
60.
Steinmetz H, Galaburda AM. Planum temporale asymmetry: invivo morphometry affords a new perspective for neuro-behavioral research. In: Reading Disabilities Springer, Netherlands; 1991, pp.143–55.
 
61.
Leonard CM, Voeller KK, Lombardino LJ, et al. Anomalous cerebral structure in dyslexia revealed with magnetic resonance imaging. Arch Neurol, 1993; 50(3): 461–9.
 
62.
Hugdahl K, Heiervang E, Nordby H, et al. Central auditory processing, MRI morphometry and brain laterality: applications to dyslexia. Scand Audiol, 1998; 27(4): 26–34.
 
63.
Bloom JS, Garcia-Barrera MA, Miller CJ, Miller SR, Hynd GW. Planum temporale morphology in children with developmental dyslexia. Neuropsychologia, 2013; 51(9): 1684–92.
 
64.
Larsen JP, Høien T, Lundberg I, Ødegaard H. MRI evaluation of the size and symmetry of the planum temporale in adolescents with developmental dyslexia. Brain and Language, 1990; 39(2): 289–301.
 
65.
Barta PE, Pearlson GD, Brill LB, et al. Planum temporale asymmetry reversal in schizophrenia: replication and relationship to gray matter abnormalities. Am J Psychiatry, 1997; 154(5): 661–7.
 
66.
Falkai P, Bogerts B, Schneider T, et al. Disturbed planum temporale asymmetry in schizophrenia. A quantitative post-mortem study. Schizophrenia Research, 1995; 14(2): 161–76.
 
67.
Hasan A, Kremer L, Gruber O, et al. Planum temporale asymmetry to the right hemisphere in first-episode schizophrenia. Psychiatry Research: Neuroimaging, 2011; 193(1): 56–9.
 
68.
Kasai K, Shenton ME, Salisbury DF, et al. Progressive decrease of left Heschl gyrus and planum temporale gray matter volume in first-episode schizophrenia: a longitudinal magnetic resonance imaging study. Arch Gen Psychiatry, 2003; 60(8): 766–75.
 
69.
Oertel-Knöchel V, Knöchel C, Matura S, Prvulovic D, Linden DE, Van de Ven V. Reduced functional connectivity and asymmetry of the planum temporale in patients with schizophrenia and firstdegree relatives. Schizophrenia Research, 2013; 147(2): 331–8.
 
70.
Ratnanather JT, Poynton CB, Pisano DV, et al. Morphometry of superior temporal gyrus and planum temporale in schizophrenia and psychotic bipolar disorder. Schizophrenia Research, 2013; 150(2): 476–83.
 
71.
Tzourio-Mazoyer N, Mazoyer B. Variation of planum temporale asymmetries with Heschl’s gyri duplications and association with cognitive abilities: MRI investigation of 428 healthy volunteers. Brain Struct Funct, 2017; 222(6): 2711–26.
 
72.
Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckener RL. Open Access Series of Imaging Studies (OASIS): crosssectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci, 2007; 19:1498–507.
 
73.
Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage, 1999; 9(2): 179–94.
 
74.
Buckener RL, Head D, Parker J, et al. A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. NeuroImage, 2004; 23: 724–38.
 
75.
Le Troter A, Auzias G, Coulon O. Automatic sulcal line extraction on cortical surfaces using geodesic path density maps. NeuroImage, 2012; 61(4): 941–9.
 
76.
De Martino F, Moerel M, Xu J, et al. High-resolution mapping of myeloarchitecture in vivo: localization of auditory areas in the human brain. Cereb Cortex, 2015; 25(10): 3394–405.
 
77.
Da Costa S, van der Zwaag W, Marques JP, Frackowiak RS, Clarke S, Saenz M. Human primary auditory cortex follows the shape of Heschl’s gyrus. J Neurosci, 2011, 31: 14067–75.
 
78.
Campain R, Minckler, JAA. A note on the gross configuration of the human auditory cortex. Brain Lang, 1976; 3: 318–23.
 
79.
R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria; 2019.
 
80.
Godey B, Schwartz D, de Graaf JB, Chauvel P, Liégos-Chauvel C. Neuromagnetic source localization of auditory evoked fields and intracerebral evoked potentials: a comparison of data in the same patients. Clin Neurophysiol, 2001; 112: 1850–9.
 
81.
Wolpaw JR, Penry JK. A temporal component of the auditory evoked response. Electroencephalogr Clin Neurophysiol, 1975; 39: 609–20.
 
82.
Musiek FE, Shinn JB, Jirsa R, Bamiou DE, Baran JA, Zaidan E. GIN (gaps-in-noise) test in performance in subjects with confirmed auditory nervous system involvement. Ear Hear, 2005; 26(6): 608–18.
 
83.
Zaehle T, Wüstenberg T, Meyer M, Jäncke L. Evidence for rapid auditory perception as the foundation of speech processing: a sparse temporal sampling fMRI study. Eur J Neurosci, 2004; 20(9): 2447–56.
 
84.
Hall DA, Haggard MP, Akeroyd MA, Summerfield AQ, Palmer AR, Elliott MR, Bowtell RW (2000). Modulation and task effects in auditory processing measured using fMRI. Human Brain Mapping, 2000; 10: 107–19.
 
85.
Steimetz H, Rademacher J, Huang Y, Hefter H, Zilles K, Thron A, Freund H. Cerebral asymmetry: MR planimetry of the human planum temporale. J Comput Assist Tomogr, 1989; 13(6): 996–1005.
 
Journals System - logo
Scroll to top