REVIEW PAPER
NEUROIMAGING METHODS FOR ASSESSMENT OF CORTICAL AUDITORY PROCESSING: A REVIEW
,
 
,
 
,
 
Tomasz Wolak 1, E-F
 
 
 
More details
Hide details
1
Bioimaging Research Center, World Hearing Center, Institute of Physiology and Pathology of Hearing, Poland
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article;
 
 
Submission date: 2020-04-22
 
 
Final revision date: 2020-09-14
 
 
Acceptance date: 2020-09-15
 
 
Publication date: 2020-11-16
 
 
Corresponding author
Tomasz Wolak   

Bioimaging Research Center, World Hearing Center, Institute of Physiology and Pathology of Hearing, Mochnackiego 10, 02-042, Warsaw, Poland
 
 
J Hear Sci 2020;10(3):24-40
 
KEYWORDS
TOPICS
ABSTRACT
In this review we describe several methods that can be used to study auditory processing in the cerebral cortex, including functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and positron emission tomography (PET). We explain the principles of each technique and list the characteristics that make them suitable for certain research applications. For each method we give a broad range of examples that have already helped uncover various aspects of cortical auditory processing. We compare and summarise the characteristics of each method in order to help the reader choose one that is best suited to answer a specific research question. We also give perspectives on multimodal imaging – collecting functional brain data with two or more techniques during one study – as a means for overcoming the limitations of each method alone by examining complementary information. This article aims to be a short introductory guide and source of reference for researchers in the field of auditory neuroimaging.
REFERENCES (195)
1.
Moore BCJ. An Introduction to the Psychology of Hearing. London: Academic Press; 2003.
 
2.
Hall JW, Swanepoel DW. Objective Assessment of Hearing. Plural Publishing; 2009.
 
3.
Burkard RF, Eggermont JJ, Don M, editors. Auditory evoked potentials: basic principles and clinical application. Philadelphia: Lippincott Williams & Wilkins; 2007.
 
4.
Kochanek KM, Śliwa L, Gołębiowski M, Piłka A, Skarżyński H. Comparison of 3 ABR methods for diagnosis of retrocochlear hearing impairment. Med Sci Monit, 2015 Dec 7; 21: 3814–24.
 
5.
Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV. Magnetoencephalography: theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys, 1993 Apr 1; 65: 413–97.
 
6.
Hari R, Puce A. MEG–EEG Primer. Oxford, New York: Oxford University Press; 2017.
 
7.
Olejniczak P. Neurophysiologic basis of EEG. J Clin Neurophysiol, 2006 Jun; 23: 186–9.
 
8.
Im C, Seo J-M. A review of electrodes for the electrical brain signal recording. Biomed Eng Lett, 2016 Aug; 6: 104–12.
 
9.
Puce A, Hämäläinen M. A review of issues related to data acquisition and analysis in EEG/MEG studies. Brain Sci, 2017 May 31; 7(6): 58.
 
10.
Klass DW. The continuing challenge of artifacts in the EEG. Am J EEG Technol, 1995 Dec; 35: 239–69.
 
11.
Sun L, Hämäläinen M, Yoshiookada. Noise cancellation for a whole-head magnetometer-based MEG system in hospital environment. Biomed Phys Eng Express, 2018 Aug 7; 4(5): 055014.
 
12.
Cohen D, Cuffin BN. Demonstration of useful differences between magnetoencephalogram and electroencephalogram. Electroencephalogr Clin Neurophysiol, 1983 Jul; 56: 38–51.
 
13.
Hari R, Parkkonen L. The brain timewise: how timing shapes and supports brain function. Philos Trans R Soc B, 2015 May 19; 370:20140170.
 
14.
Cohen MX. Where does EEG come from and what does it mean? Trends Neurosci, 2017 Apr; 40: 208–18.
 
15.
Chu CJ. High density EEG: what do we have to lose? Clin Neurophysiol, 2015 Mar; 126: 433–4.
 
16.
Michel CM. High-resolution EEG. In Handbook of Clinical Neurology. Elsevier; 2019. pp. 185–201.
 
17.
Nurminen J, Taulu S, Nenonen J, Helle L, Simola J, Ahonen A. Improving MEG performance with additional tangential sensors. IEEE Trans Biomed Eng, 2013 Sep; 60: 2559–66.
 
18.
Okada Y, Hämäläinen M, Pratt K, et al. BabyMEG: A wholehead pediatric magnetoencephalography system for human brain development research. Rev Sci Instrum, 2016 Sep 1; 87:094301.
 
19.
Nunez PL, Srinivasan R. Electric Fields of the Brain: The Neurophysics of EEG. 2nd ed. Oxford; New York: Oxford University Press; 2006.
 
20.
Petrov Y, Nador J, Hughes C, Tran S, Yavuzcetin O, Sridhar S. Ultra-dense EEG sampling results in two-fold increase of functional brain information. NeuroImage, 2014 Apr 15; 90: 140–5.
 
21.
Michel CM, Brunet D. EEG Source imaging: a practical review of the analysis steps. Front Neurol, 2019 Apr 4; 10.
 
22.
Wendel K, Väisänen O, Malmivuo J, et al. EEG/MEG source imaging: methods, challenges, and open issues. Comput Intell Neurosci, 2009; 2009:e656092.
 
23.
Hedrich T, Pellegrino G, Kobayashi E, Lina JM, Grova C. Comparison of the spatial resolution of source imaging techniques in high-density EEG and MEG. NeuroImage, 2017 Aug; 157: 531–44.
 
24.
Debener S, Minow F, Emkes R, Gandras K, de Vos M. How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology, 2012 Sep 26; 49: 1617–21.
 
25.
Hill RM, Boto E, Holmes N, et al. A tool for functional brain imaging with lifespan compliance. Nat Commun, 2019 Nov 5; 10: 1–11.
 
26.
Iivanainen J, Stenroos M, Parkkonen L. Measuring MEG closer to the brain: performance of on-scalp sensor arrays. Neuro-Image, 2017 Feb 15; 147: 542–53.
 
27.
Homölle S, Oostenveld R. Using a structured-light 3D scanner to improve EEG source modeling with more accurate electrode positions. J Neurosci Methods, 2019 Oct 1; 326:108378.
 
28.
Rodríguez-Calvache M, Calle A, Valderrama S, López IA, López JD. Analysis of exact electrode positioning systems for multichannel-EEG. Commun Comput Inf Sci, 2018; 523–34.
 
29.
Bleichner MG, Debener S. Concealed, unobtrusive ear-centered EEG acquisition: cEEGrids for transparent EEG. Front Hum Neurosci, 2017 Apr 7; 11: 163.
 
30.
Debener S, Bleichner MG. Transparent electroencephalography?: exploring ear-EEG for long-term, mobile electrophysiology. IEEE Xplore; 2019.
 
31.
Mikkelsen KB, Kappel SL, Mandic DP, Kidmose P. EEG recorded from the ear: characterizing the ear-EEG method. Front Neurosci, 2015 Nov 18; 9: 438.
 
32.
Barkley GL, Baumgartner C. MEG and EEG in epilepsy. J Clin Neurophysiol, 2003 Jun; 20: 163–78.
 
33.
Enriquez-Geppert S, Huster RJ, Herrmann CS. EEG-neurofeedback as a tool to modulate cognition and behavior: a review tutorial. Front Hum Neurosci, 2017 Feb 22; 11.
 
34.
Florin E, Bock E, Baillet S. Targeted reinforcement of neural oscillatory activity with real-time neuroimaging feedback. NeuroImage, 2014 Mar; 88: 54–60.
 
35.
Birbaumer N, Cohen LG. Brain–computer interfaces: communication and restoration of movement in paralysis. J Physiol, 2007 Mar 14; 579: 621–36.
 
36.
Douglas NJ, Thomas S, Jan MA. Clinical value of polysomnography. Lancet, 1992 Feb 1; 339: P347–50.
 
37.
Luck SJ, Kappenman ES. The Oxford Handbook of Event-Related Potential Components. Oxford University Press, USA; 2012.
 
38.
Luck SJ. An Introduction to the Event-Related Potential Technique. MIT Press; 2014.
 
39.
Martin BA, Tremblay KL, Korczak P. Speech evoked potentials: from the laboratory to the clinic. Ear Hear, 2008 Jun; 29: 285–313.
 
40.
Van Dun B, Dillon H, Seeto M. Estimating hearing thresholds in hearing-impaired adults through objective detection of cortical auditory evoked potentials. J Am Acad Audiol, 2015 Apr 1; 26: 370–83.
 
41.
Li LP-H, Chen K-C, Lee P-L, et al. Neuromagnetic index of hemispheric asymmetry predicting long-term outcome in sudden hearing loss. NeuroImage, 2013 Jan; 64: 356–64.
 
42.
Ponton CW, Vasama J-P, Tremblay K, Khosla D, Kwong B, Don M. Plasticity in the adult human central auditory system: evidence from late-onset profound unilateral deafness. Hear Res, 2001 Apr; 154: 32–44.
 
43.
Kral A, Sharma A. Developmental neuroplasticity after cochlear implantation. Trends Neurosci, 2012 Feb; 35: 111–22.
 
44.
Paluch P, Kochański B, Ganc M, et al. Early general development and central auditory system maturation in children with cochlear implants: a case series. Int J Pediatr Otorhinolaryngol, 2019 Nov 1; 126:109625.
 
45.
Näätänen R, Paavilainen P, Rinne T, Alho K. The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol, 2007 Dec; 118: 2544–90.
 
46.
Näätänen R, Lehtokoski A, Lennes M, et al. Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 1997 Jan 30; 385: 432–4.
 
47.
McDermott JH. The cocktail party problem. Curr Biol, 2009 Dec; 19: R1024–7.
 
48.
Hillyard SA, Hink RF, Schwent VL, Picton TW. Electrical Signs of Selective Attention in the Human Brain. Science, 1973 Oct 12; 182: 177–80.
 
49.
Aimoni C, Crema L, Savini S, et al. Hearing threshold estimation by auditory steady state responses (ASSR) in children. Acta Otorhinolaryngol Ital, 2018 Aug; 38: 361–368.
 
50.
Picton TW, John MS, Dimitrijevic A, Purcell D. Human auditory steady-state responses. Int J Audiol, 2003 Jan; 42: 177–219.
 
51.
Kaneko K, Fujiki N, Hari R. Binaural interaction in the human auditory cortex revealed by neuromagnetic frequency tagging: no effect of stimulus intensity. Hear Res, 2003 Sep; 183: 1–6.
 
52.
Undurraga JA, Haywood NR, Marquardt T, McAlpine D. Neural representation of interaural time differences in humans: an objective measure that matches behavioural performance. JARO, 2016 Dec; 17: 591–607.
 
53.
Etard O, Reichenbach T. Neural speech tracking in the theta and in the delta frequency band differentially encode clarity and comprehension of speech in noise. J Neurosci, 2019 May 20; 39: 5750–9.
 
54.
Somers B, Verschueren E, Francart T. Neural tracking of the speech envelope in cochlear implant users. J Neural Eng, 2018 Nov 16; 16:016003.
 
55.
Vanheusden FJ, Kegler M, Ireland K, et al. Hearing aids do not alter cortical entrainment to speech at audible levels in mildto-moderately hearing-impaired subjects. Front Hum Neurosci, 2020; 14.
 
56.
Etard O, Kegler M, Braiman C, Forte AE, Reichenbach T. Decoding of selective attention to continuous speech from the human auditory brainstem response. NeuroImage, 2019;200:1–11.
 
57.
Ashton H, Reid K, Marsh R, Johnson I, Alter K, Griffiths T. High frequency localised “hot spots” in temporal lobes of patients with intractable tinnitus: a quantitative electroencephalographic (QEEG) study. Neurosci Lett, 2007 Oct; 426:23–8.
 
58.
Song J-J, Punte AK, De Ridder D, Vanneste S, Van de Heyning P. Neural substrates predicting improvement of tinnitus after cochlear implantation in patients with single-sided deafness. Hear Res, 2013 May; 299:1–9.
 
59.
Milner R, Lewandowska M, Ganc M, Włodarczyk E, Grudzień D, Skarżyński H. Abnormal resting-state quantitative electroencephalogram in children with central auditory processing disorder: a pilot study. Front Neurosci, 2018 May 11;12.
 
60.
Güntensperger D, Thüring C, Meyer M, Neff P, Kleinjung T. Neurofeedback for tinnitus treatment: review and current concepts. Front Aging Neurosci, 2017 Dec 1; 9.
 
61.
Milner R, Lewandowska M, Ganc M, Cieśla K, Niedziałek I, Skarżyński H. Slow cortical potential neurofeedback in chronic tinnitus therapy: a case report. Appl Psychophysiol Biofeedback, 2015 Oct 12; 41: 225–49.
 
62.
Lindquist MA, Meng Loh J, Atlas LY, Wager TD. Modeling the hemodynamic response function in fMRI: efficiency, bias and mis-modeling. Math Brain Imaging, 2009 Mar 1; 45: S187–98.
 
63.
Huettel SA, Song AW, McCarthy G. Functional Magnetic Resonance Imaging. 2nd edition. Sunderland, Mass: Sinauer Associates; 2008.
 
64.
Gulban OF, Goebel R, Moerel M, et al. Improving a probabilistic cytoarchitectonic atlas of auditory cortex using a novel method for inter-individual alignment. bioRxiv. 2020 Jan 1;2020.03.30.015313.
 
65.
Barisano G, Sepehrband F, Ma S, et al. Clinical 7 T MRI: are we there yet? A review about magnetic resonance imaging at ultra-high field. Br J Radiol, 2019; 92: 20180492.
 
66.
Kraff O, Quick HH. 7T: physics, safety, and potential clinical applications. J Magn Reson Imaging, 2017 Dec; 46: 1573–89.
 
67.
Ravicz ME, Melcher JR, Kiang NY-S. Acoustic noise during functional magnetic resonance imaging. J Acoust Soc Am, 2000 Oct; 108: 1683–96.
 
68.
Seifritz E, Di Salle F, Esposito F, Herdener M, Neuhoff JG, Scheffler K. Enhancing BOLD response in the auditory system by neurophysiologically tuned fMRI sequence. NeuroImage, 2006 Feb; 29: 1013–22.
 
69.
Talavage TM, Sereno MI, Melcher JR, Ledden PJ, Rosen BR, Dale AM. Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. J Neurophysiol, 2004 Mar; 91: 1282–96.
 
70.
Woods DL, Stecker GC, Rinne T, et al. Functional maps of human auditory cortex: effects of acoustic features and attention. PLOS One, 2009 Apr 13; 4: e5183.
 
71.
Hertz U, Amedi A. Flexibility and stability in sensory processing revealed using visual-to-auditory sensory substitution. Cereb Cortex, 2015 Aug; 25: 2049–64.
 
72.
Humphries C, Liebenthal E, Binder JR. Tonotopic organization of human auditory cortex. NeuroImage, 2010 Apr; 50: 1202–11.
 
73.
Langers DRM, van Dijk P, Schoenmaker ES, Backes WH. fMRI activation in relation to sound intensity and loudness. Neuro-Image, 2007 Apr; 35: 709–18.
 
74.
Striem-Amit E, Hertz U, Amedi A. Extensive cochleotopic mapping of human auditory cortical fields obtained with phase-encoding fMRI. PLOS One, 2011 Mar 23; 6: e17832.
 
75.
Wessinger CM, VanMeter J, Tian B, Van Lare J, Pekar J, Rauschecker JP. Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. J Cogn Neurosci, 2001 Jan; 13: 1–7.
 
76.
Peelle JE. Methodological challenges and solutions in auditory functional magnetic resonance imaging. Front Neurosci, 2014; 8: 253.
 
77.
Sorger B, Kamp T, Weiskopf N, Peters JC, Goebel R. When the brain takes ‘BOLD’ steps: real-time fMRI neurofeedback can further enhance the ability to gradually self-regulate regional brain activation. Neurosci, 2018 May 15; 378: 71–88.
 
78.
Sorger B, Goebel R. Real-time fMRI for brain–computer interfacing. Handb Clin Neurol, 2020; 168: 289–302.
 
79.
Mather M, Cacioppo JT, Kanwisher N. How fMRI can inform cognitive theories. Perspect Psychol Sci, 2013 Jan; 8: 108–13.
 
80.
DeYoe EA, Raut RV. Visual mapping using BOLD fMRI. Neuroimaging Clin N Am, 2014 Nov; 24: 573–84.
 
81.
Hall D, Lanting C, Hartley D. Using fMRI to examine central auditory plasticity. In: Papageorgiou TD, Christopoulos GI, Smirnakis SM, editors. Advanced Brain Neuroimaging Topics in Health and Disease – Methods and Applications. InTech Open; 2014.
 
82.
Price CJ. A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 2012 Aug; 62: 816–47.
 
83.
Talavage TM, Gonzalez-Castillo J, Scott SK. Auditory neuroimaging with fMRI and PET. Hear Res, 2014 Jan; 307: 4–15.
 
84.
Binder JR. fMRI of language systems. In: Filippi M, editor. Neuromethods: fMRI Techniques and Protocols. New York: Springer; 2016. p. 355–85.
 
85.
Black DF, Vachha B, Mian A, et al. American Society of Functional Neuroradiology: recommended fMRI paradigm algorithms for presurgical language assessment. Am J Neuroradiol, 2017 Oct 1; 38: E65–73.
 
86.
Zubicaray GI de, Schiller NO. The Oxford Handbook of Neurolinguistics. Oxford University Press; 2019.
 
87.
Skarzynski PH, Wolak T, Skarzynski H, et al. Application of the functional magnetic resonance imaging (fMRI) for the assessment of the primary auditory cortex function in partial deafness patients: a preliminary study. J Int Adv Otol, 2013; 9: 153–60.
 
88.
Wolak T, Cieśla K, Wojcik J, Skarzynski H. Effect of sound intensity on level of activation in auditory cortex as measured by fMRI. J Hear Sci, 2017; 7: 20–7.
 
89.
Wolak T, Cieśla K, Lorens A, et al. Tonotopic organisation of the auditory cortex in sloping sensorineural hearing loss. Hear Res, 2017 Nov; 355: 81–96.
 
90.
Wolak T, Cieśla K, Rusiniak M, et al. Influence of acoustic overstimulation on the central auditory system: a functional magnetic resonance imaging (fMRI) study. Med Sci Monit, 2016; 22: 4623–35.
 
91.
Ahveninen J, Chang W-T, Huang S, et al. Intracortical depth analyses of frequency-sensitive regions of human auditory cortex using 7T fMRI. NeuroImage, 2016 Dec 1; 143: 116–27.
 
92.
Chang KH, Thomas JM, Boynton GM, Fine I. Reconstructing tone sequences from functional magnetic resonance imaging blood-oxygen level dependent responses within human primary auditory cortex. Front Psychol, 2017; 8: 1983.
 
93.
Frühholz S, Trost W, Grandjean D, Belin P. Neural oscillations in human auditory cortex revealed by fast fMRI during auditory perception. NeuroImage, 2020 Feb 15; 207: 116401.
 
94.
Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med, 1995 Oct; 34: 537–41.
 
95.
Pluta A, Wolak T, Czajka N, et al. Reduced resting-state brain activity in the default mode network in children with (central) auditory processing disorders. Behav Brain Funct, 2014 Sep 26; 10: 33.
 
96.
Fitzhugh MC, Hemesath A, Schaefer SY, Baxter LC, Rogalsky C. Functional connectivity of Heschl’s gyrus associated with agerelated hearing loss: a resting-state fMRI study. Front Psychol, 2019 Nov 6; 10: 2485.
 
97.
Puschmann S, Thiel CM. Changed crossmodal functional connectivity in older adults with hearing loss. Cortex, 2017 Jan 1; 86: 109–22.
 
98.
Wolak T, Cieśla K, Pluta A, Włodarczyk E, Biswal B, Skarżyński H. Altered functional connectivity in patients with sloping sensorineural hearing loss. Front Hum Neurosci, 2019 Aug 22; 13: 284.
 
99.
Giraud A-L, Lee H-J. Predicting cochlear implant outcome from brain organisation in the deaf. Restor Neurol Neurosci, 2007; 255: 381–90.
 
100.
Lazard DS, Lee H-J, Truy E, Giraud A-L. Bilateral reorganization of posterior temporal cortices in post-lingual deafness and its relation to cochlear implant outcome. Hum Brain Mapp, 2013 May; 34: 1208–19.
 
101.
Todt I, Tittel A, Ernst A, Mittmann P, Mutze S. Pain free 3 T MRI scans in cochlear implantees. Otol Neurotol, 2017 Dec; 38: e401–4.
 
102.
Zhen E, Kuthubutheen J, Misso D, Rodrigues S, Thompson A. 3 Tesla MRI brain scanning under general anaesthesia in a paediatric 3 Tesla-compatible cochlear implant recipient, first reported case: clinical considerations and implications for future practice. Int J Pediatr Otorhinolaryngol, 2020 Mar 21; 133: 110015.
 
103.
Pérez‐Juste I, Faza ON. Interaction of radiation with matter. In: Structure Elucidation in Organic Chemistry. John Wiley & Sons, Ltd; 2014. p. 1–26.
 
104.
Shah N, Cerussi A, Eker C, et al. Noninvasive functional optical spectroscopy of human breast tissue. Proc Natl Acad Sci U.S.A. 2001 Apr 10; 98: 4420–5.
 
105.
Villringer A, Chance B. Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci, 1997 Oct 1; 20: 435–42.
 
106.
Nippert AR, Biesecker KR, Newman EA. Mechanisms mediating functional hyperemia in the brain. Neurosci Rev J, 2018 Feb; 24: 73–83.
 
107.
Pinti P, Tachtsidis I, Hamilton A, et al. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann N Y Acad Sci, 2020 Mar; 1464(1): 5–29.
 
108.
Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 1977 Dec 23; 198: 1264–7.
 
109.
Scholkmann F, Kleiser S, Metz AJ, et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. NeuroImage, 2014; 85: 6–27.
 
110.
Peelle JE. Optical neuroimaging of spoken language. Lang Cogn Neurosci, 2017 Aug 9; 32: 847–54.
 
111.
van Gerven M, Farquhar J, Schaefer R, et al. The brain–computer interface cycle. J Neural Eng, 2009 Sep 1; 6: 041001.
 
112.
Culver JP, Ntziachristos V, Holboke MJ, Yodh AG. Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis. Opt Lett, 2001; 26: 701–3.
 
113.
Hassanpour MS, Eggebrecht AT, Culver JP, Peelle JE. Mapping cortical responses to speech using high-density diffuse optical tomography. NeuroImage, 2015 Aug 15; 117: 319–26.
 
114.
Haeussinger FB, Heinzel S, Hahn T, Schecklmann M, Ehlis A-C, Fallgatter AJ. Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging. PLOS One, 2011 Oct 24; 6: e26377.
 
115.
Koch SP, Habermehl C, Mehnert J, et al. High-resolution optical functional mapping of the human somatosensory cortex. Front Neuroenergetics, 2010 Jun 14; 2: 12.
 
116.
White BR, Culver JP. Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance. J Biomed Opt, 2010; 15: 026006.
 
117.
Chitnis D, Cooper RJ, Dempsey L, et al. Functional imaging of the human brain using a modular, fibre-less, high-density diffuse optical tomography system. Biomed Opt Express, 2016; 7: 4275–88.
 
118.
Eggebrecht AT, Ferradal SL, Robichaux-Viehoever A, et al. Mapping distributed brain function and networks with diffuse optical tomography. Nat Photonics, 2014 Jun; 8: 448–54.
 
119.
Tsuzuki D, Dan I. Spatial registration for functional near-infrared spectroscopy: from channel position on the scalp to cortical location in individual and group analyses. NeuroImage, 2014 Jan 15; 85 Pt 1: 92–103.
 
120.
Strangman G, Boas DA, Sutton JP. Non-invasive neuroimaging using near-infrared light. Biol Psychiatry, 2002 Oct 1; 52: 679–93.
 
121.
Wheelock MD, Culver JP, Eggebrecht AT. High-density diffuse optical tomography for imaging human brain function. Rev Sci Instrum, 2019; 90: 51101.
 
122.
Kolasa G, Rybakowski F. Application of functional near-infrared spectroscopy in psychiatry and physical activity studies. Pharmacother Psychiatry Neurol, 2019 Jan 1; 35: 131–45.
 
123.
Mihara M, Miyay I. Review of functional near-infrared spectroscopy in neurorehabilitation. Neurophotonics, 2016 Jul; 3: 031414.
 
124.
van de Rijt LPH, van Wanrooij MM, Snik AFM, Mylanus EAM, van Opstal AJ, Roye A. Measuring cortical activity during auditory processing with functional near-infrared spectroscopy. J Hear Sci, 2018; 8: 9–18.
 
125.
Sevy ABG, Bortfeld H, Huppert TJ, Beauchamp MS, Tonini RE, Oghalai JS. Neuroimaging with near-infrared spectroscopy demonstrates speech-evoked activity in the auditory cortex of deaf children following cochlear implantation. Hear Res, 2010; 270: 39–47.
 
126.
van de Rijt LPH, van Opstal AJ, Mylanus EAM, et al. Temporal cortex activation to audiovisual speech in normal-hearing and cochlear implant users measured with functional near-infrared spectroscopy. Front Hum Neurosci, 2016 Feb 11; 10: 48.
 
127.
Schroeder ML, Fishell AK, Sherafati A, Svoboda AM, Culver JP, Eggebrecht AT. Cortical activity underlying overt and covert language generation measured using high-density diffuse optical tomography. Proc SPIE-OSA, 2019. https://doi.org/10.1117/12.252....
 
128.
Santosa H, Hong MJ, Hong K-S. Lateralization of music processing with noises in the auditory cortex: an fNIRS study. Front Behav Neurosci, 2014; 8: 418.
 
129.
Hong K-S, Santosa H. Decoding four different sound-categories in the auditory cortex using functional near-infrared spectroscopy. Hear Res, 2016 Mar 1; 333: 157–66.
 
130.
Lawrence RJ, Wiggins IM, Anderson CA, Davies-Thompson J, Hartley DEH. Cortical correlates of speech intelligibility measured using functional near-infrared spectroscopy (fNIRS). Hear Res, 2018 Dec 1; 370: 53–64.
 
131.
Pollonini L, Olds C, Abaya H, Bortfeld H, Beauchamp MS, Oghalai JS. Auditory cortex activation to natural speech and simulated cochlear implant speech measured with functional nearinfrared spectroscopy. Hear Res, 2014 Mar; 309: 84–93.
 
132.
Moriai-Izawa A, Dan H, Dan I, et al. Multichannel fNIRS assessment of overt and covert confrontation naming. Brain Lang, 2012 Jun 1; 121: 185–93.
 
133.
Wijayasiri P, Hartley DEH, Wiggins IM. Brain activity underlying the recovery of meaning from degraded speech: a functional near-infrared spectroscopy (fNIRS) study. Hear Res, 2017 Aug; 351: 55–67.
 
134.
McDonald NM, Perdue KL, Eilbott J, Loyal J, Shic F, Pelphrey KA. Infant brain responses to social sounds: a longitudinal functional near-infrared spectroscopy study. Dev Cogn Neurosci, 2019 Apr 1; 36: 100638.
 
135.
Cristia A, Minagawa-Kawai Y, Egorova N, et al. Neural correlates of infant accent discrimination: an fNIRS study. Dev Sci, 2014 Jul; 17: 628–35.
 
136.
Olds C, Pollonini L, Abaya H, et al. Cortical activation patterns correlate with speech understanding after cochlear implantation. Ear Hear, 2016; 37: e160–72.
 
137.
Bisconti S, Shulkin M, Hu X, Basura GJ, Kileny PR, Kovelman I. Functional near-infrared spectroscopy brain imaging investigation of phonological awareness and passage comprehension abilities in adult recipients of cochlear implants. J Speech Lang Hear Res, 2016; 59: 239–53.
 
138.
Chen L-C, Sandmann P, Thorne JD, Bleichner MG, Debener S. Cross-modal functional reorganization of visual and auditory cortex in adult cochlear implant users identified with fNIRS. Neural Plast, 2016; 2016:4382656.
 
139.
Dewey RS, Hartley DEH. Cortical cross-modal plasticity following deafness measured using functional near-infrared spectroscopy. Hear Res, 2015; 325: 55–63.
 
140.
Anderson CA, Wiggins IM, Kitterick PT, Hartley DEH. Adaptive benefit of cross-modal plasticity following cochlear implantation in deaf adults. Proc Natl Acad Sci U.S.A, 2017 Sep 19; 114: 10256–61.
 
141.
San Juan J, Hu X-S, Issa M, et al. Tinnitus alters resting state functional connectivity (RSFC) in human auditory and nonauditory brain regions as measured by functional near-infrared spectroscopy (fNIRS). PLOS One, 2017 Jun 12; 12: e0179150.
 
142.
Paans AMJ, van Waarde A, Elsinga PH, Willemsen ATM, Vaalburg W. Positron emission tomography: the conceptual idea using a multidisciplinary approach. Methods, 2002 Jul; 27: 195–207.
 
143.
Huang Y-Y. An Overview of PET Radiopharmaceuticals in Clinical Use: Regulatory, Quality and Pharmacopeia Monographs of the United States and Europe. InTech Open, 2018. DOI: 10.5772/intechopen.79227.
 
144.
Portnow LH, Vaillancourt DE, Okun MS. The history of cerebral PET scanning: from physiology to cutting-edge technology. Neurology, 2013 Mar 4; 80: 952–6.
 
145.
Sander CY, Hesse S. News and views on in-vivo imaging of neurotransmission using PET and MRI. Q J Nucl Med Mol Imaging, 2017 Dec; 61: 414–28.
 
146.
Kameyama M, Murakami K, Jinzaki M. Comparison of [15O] H2O positron emission tomography and functional magnetic resonance imaging in activation studies. World J Nucl Med, 2016; 15: 3–6.
 
147.
Ruytjens L, Willemsen ATM, Van Dijk P, Wit HP, Albers FWJ. Functional imaging of the central auditory system using PET. Acta Otolaryngol, 2006 Jan; 126: 1236–44.
 
148.
Horwitz B, Braun AR. Brain network interactions in auditory, visual and linguistic processing. Brain Lang, 2004 May; 89: 377–84.
 
149.
Wong D, Pisoni DB, Learn J, Gandour JT, Miyamoto RT, Hutchins GD. PET imaging of differential cortical activation by monaural speech and nonspeech stimuli. Hear Res, 2002 Apr; 166: 9–23.
 
150.
Petacchi A, Kaernbach C, Ratnam R, Bower JM. Increased activation of the human cerebellum during pitch discrimination: a positron emission tomography (PET) study. Hear Res, 2011 Dec; 282: 35–48.
 
151.
Satoh M, Nagata K, Tomimoto H. Sound richness of music might be mediated by color perception: a PET study. Behav Neurol, 2015; 2015: 1–10.
 
152.
Lauter JL, Herscovitch P, Formby C, Raichle ME. Tonotopic organization in human auditory cortex revealed by positron emission tomography. Hear Res, 1985 Jan; 20: 199–205.
 
153.
Strelnikov K, Marx M, Lagleyre S, Fraysse B, Deguine O, Barone P. PET-imaging of brain plasticity after cochlear implantation. Hear Res, 2015 Apr; 322: 180–7.
 
154.
Berding G, Wilke F, Rode T, et al. Positron emission tomography imaging reveals auditory and frontal cortical regions involved with speech perception and loudness adaptation. PLOS One, 2015 Jun 5; 10: e0128743.
 
155.
Giraud A-L, Price CJ, Graham JM, Frackowiak RSJ. Functional plasticity of language-related brain areas after cochlear implantation. Brain, 2001 Jul 1; 124: 1307–16.
 
156.
Limb CJ, Molloy AT, Jiradejvong P, Braun AR. Auditory cortical activity during cochlear implant-mediated perception of spoken language, melody, and rhythm. JARO, 2010 Mar; 11: 133–43.
 
157.
Mortensen MV, Mirz F, Gjedde A. Restored speech comprehension linked to activity in left inferior prefrontal and right temporal cortices in postlingual deafness. NeuroImage, 2006 Jun; 31: 842–52.
 
158.
Naito Y, Okazawa H, Honjo I, et al. Cortical activation with sound stimulation in cochlear implant users demonstrated by positron emission tomography. Cogn Brain Res, 1995 Jul; 2: 207–14.
 
159.
Naito Y, Tateya I, Fujiki N, et al. Increased cortical activation during hearing of speech in cochlear implant users. Hear Res, 2000 May; 143: 139–46.
 
160.
Okazawa H, Naito Y, Yonckura Y, et al. Cochlear implant efficiency in pre- and postlingually deaf subjects: a study with H215O and PET. Brain, 1996 Aug 1; 119: 1297–306.
 
161.
Petersen B, Gjedde A, Wallentin M, Vuust P. Cortical plasticity after cochlear implantation. Neural Plast, 2013; 2013: 1–11.
 
162.
Song J-J, Mertens G, Deleye S, et al. Neural substrates of conversion deafness in a cochlear implant patient: a molecular imaging study using H215O-PET. Otol Neurotol, 2014 Dec; 35: 1780–4.
 
163.
Strelnikov K, Rouger J, Lagleyre S, et al. Increased audiovisual integration in cochlear-implanted deaf patients: independent components analysis of longitudinal positron emission tomography data. Eur J Neurosci, 2015 Mar; 41: 677–85.
 
164.
Strelnikov K, Rouger J, Eter E, et al. Binaural stimulation through cochlear implants in postlingual deafness: a positron emission tomographic study of word recognition. Otol Neurotol, 2011 Oct; 32: 1210–7.
 
165.
Strelnikov K, Rouger J, Demonet J-F, et al. Visual activity predicts auditory recovery from deafness after adult cochlear implantation. Brain, 2013 Dec; 136: 3682–95.
 
166.
Wong D, Miyamoto RT, Pisoni DB, Sehgal M, Hutchins GD. PET imaging of cochlear-implant and normal-hearing subjects listening to speech and nonspeech. Hear Res, 1999 Jun; 132: 34–42.
 
167.
Giraud A-L, Truy E. The contribution of visual areas to speech comprehension: a PET study in cochlear implants patients and normal-hearing subjects. Neuropsychologia, 2002 Jan; 40: 1562–9.
 
168.
Coez A, Zilbovicius M, Ferrary E, et al. Cochlear implant benefits in deafness rehabilitation: PET study of temporal voice activations. J Nucl Med, 2007 Dec 12; 49: 60–7.
 
169.
Rouger J, Lagleyre S, Démonet J-F, Fraysse B, Deguine O, Barone P. Evolution of crossmodal reorganization of the voice area in cochlear-implanted deaf patients. Hum Brain Mapp, 2012 Aug; 33: 1929–40.
 
170.
Suh M-W, Park KT, Lee H-J, Lee JH, Chang SO, Oh SH. Factors contributing to speech performance in elderly cochlear implanted patients: an FDG-PET study: a preliminary study. J Int Adv Otol, 2015 Sep 17; 11: 98–103.
 
171.
Langguth B, Eichhammer P, Kreutzer A, et al. The impact of auditory cortex activity on characterizing and treating patients with chronic tinnitus: first results from a PET study. Acta Otolaryngol, 2006 Jan; 126: 84–8.
 
172.
Mennemeier M, Chelette KC, Allen S, et al. Variable changes in PET activity before and after rTMS treatment for tinnitus. Laryngoscope, 2011 Apr; 121: 815–22.
 
173.
Schecklmann M, Landgrebe M, Poeppl TB, et al. Neural correlates of tinnitus duration and distress: a positron emission tomography study. Hum Brain Mapp, 2011; 34: 233–40.
 
174.
Guinchard A-C, Ghazaleh N, Saenz M, et al. Study of tonotopic brain changes with functional MRI and FDG-PET in a patient with unilateral objective cochlear tinnitus. Hear Res, 2016 Nov; 341: 232–9.
 
175.
Lee JS, Lee DS, Oh SH, et al. PET evidence of neuroplasticity in adult auditory cortex of postlingual deafness. J Nucl Med, 2003; 44: 1435–9.
 
176.
Okuda T, Nagamachi S, Ushisako Y, Tono T. Glucose metabolism in the primary auditory cortex of postlingually deaf patients: an FDG-PET study. ORL, 2013; 75: 342–9.
 
177.
Verger A, Roman S, Chaudat R-M, et al. Changes of metabolism and functional connectivity in late-onset deafness: evidence from cerebral 18 F-FDG-PET. Hear Res, 2017 Sep; 353: 8–16.
 
178.
Ito J, Iwasaki Y, Sakakibara J, Yonekura Y. Positron emission tomography of auditory sensation in deaf patients and patients with cochlear implants. Ann Otol Rhinol Laryngol, 1993 Oct; 102: 797–801.
 
179.
Lee H-J, Giraud A-L, Kang E, et al. Cortical activity at rest predicts cochlear implantation outcome. Cereb Cortex, 2007 Apr; 17: 909–17.
 
180.
Yoshida H, Takahashi H, Kanda Y, Chiba K. PET-CT observations of cortical activity in pre-lingually deaf adolescent and adult patients with cochlear implantation. Acta Otolaryngol, 2017 May 4; 137: 464–70.
 
181.
Green KMJ, Julyan PJ, Hastings DL, Ramsden RT. Cortical activations in sequential bilateral cochlear implant users. Cochlear Implants Int, 2011 Feb; 12: 3–9.
 
182.
Kang E, Lee DS, Kang H, et al. Neural changes associated with speech learning in deaf children following cochlear implantation. NeuroImage, 2004 Jul; 22: 1173–81.
 
183.
Fujiwara K, Naito Y, Senda M, et al. Brain metabolism of children with profound deafness: a visual language activation study by 18F-fluorodeoxyglucose positron emission tomography. Acta Otolaryngol, 2008 Jan; 128: 393–7.
 
184.
Liu S, Cai W, Liu S, et al. Multimodal neuroimaging computing: a review of the applications in neuropsychiatric disorders. Brain Inform, 2015 Sep; 2: 167–80.
 
185.
Putze F, Hesslinger S, Tse C-Y, et al. Hybrid fNIRS-EEG based classification of auditory and visual perception processes. Front Neurosci, 2014; 8.
 
186.
Pillai RLI, Bartlett EA, Ananth MR, et al. Examining the underpinnings of loudness dependence of auditory evoked potentials with positron emission tomography. NeuroImage, 2020 Jun 1; 213: 116733.
 
187.
Huotilainen M, Winkler I, Alho K, et al. Combined mapping of human auditory EEG and MEG responses. Electroencephalogr Clin Neurophysiol, 1998 Jul; 108: 370–9.
 
188.
Huster RJ, Debener S, Eichele T, Herrmann C. Methods for simultaneous EEG-fMRI: an introductory review. J Neurosci, 2012 May 2; 32(18): 6053–60.
 
189.
Horovitz SG, Skudlarski P, Gore JC. Correlations and dissociations between BOLD signal and P300 amplitude in an auditory oddball task: a parametric approach to combining fMRI and ERP. Magn Reson Imaging, 2002 May 1; 20: 319–25.
 
190.
Kirino E, Hayakawa Y, Inami R, Inoue R, Aoki S. Simultaneous fMRI-EEG-DTI recording of MMN in patients with schizophrenia. PLOS One, 2019 May 9; 14: e0215023.
 
191.
Mangalathu-Arumana J, Beardsley SA, Liebenthal E. Withinsubject joint independent component analysis of simultaneous fMRI/ERP in an auditory oddball paradigm. NeuroImage, 2012 May 1; 60(4): 2247–57.
 
192.
Rusiniak M, Lewandowska M, Wolak T, et al. A modified oddball paradigm for investigation of neural correlates of attention: a simultaneous ERP–fMRI study. Magn Reson Mater Phy, 2013 Dec; 26: 511–26.
 
193.
Milner R, Rusiniak M, Lewandowska M, et al. Towards neural correlates of auditory stimulus processing: a simultaneous auditory evoked potentials and functional magnetic resonance study using an odd-ball paradigm. Med Sci Monit, 2014; 20: 35–46.
 
194.
Abreu R, Leal A, Figueiredo P. EEG-informed fMRI: a review of data analysis methods. Front Hum Neurosci, 2018 Feb 6; 12.
 
195.
Blinowska K, Müller-Putz G, Kaiser V, et al. Multimodal imaging of human brain activity: rational, biophysical aspects and modes of integration. Comput Intell Neurosci, 2009; 2009: 1–10.
 
Journals System - logo
Scroll to top