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Abstract

Humans are able to get an impression of the size of an object by hearing it resonate. While this ability is well described for pe-
riodic speech sounds we investigate here the ability to discriminate the size of non-periodic transient impact sounds. Three 
experiments were performed on normal listeners (n=19) to investigate the importance of the spectral cue in different fre-
quency regions. Recordings from pulse resonance sounds made by a metal ball hitting polystyrene spheres of 5 different siz-
es were used in the experiments. Recordings were manipulated in order to show that the same cues used in speaker size dis-
crimination are used for transient signals. Results show that the most prominent resonances are the most important cue, but 
frequencies above 8 kHz also contribute. The results are explained by physiologically inspired model of size discrimination 
that is based on the Auditory Image Model, and its key part is the Mellin transform. The model can predict which of two ob-
jects is bigger. We conclude that similar cues that are used for speaker size discrimination are important for transient sounds.
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DIFERENCIACIÓN DE TAMAÑOS CON SONIDOS DE CORTA DURACIÓN: 
PERCEPCIÓN Y MODELACIÓN

Resumen

El hombre es capaz de apreciar el tamaño de un objeto al oír la resonancia que produce. Aunque esta capacidad está bien des-
crita en publicaciones en lo relativo a los sonidos periódicos del habla, en estudio queremos examinar la capacidad de diferen-
ciar el tamaño con ayuda de sonidos no periódicos de corta duración producidos por golpes. Se realizaron tres experimentos 
en los que participaron personas que oyen bien (n=19) con el objetivo de estudiar el significado de las indicaciones proceden-
tes del espectro acústico en varios ámbitos de frecuencia. En el estudio se utilizó el registro de la resonancia de sonidos proce-
dentes de un solo impulso producido por una bola de metal al golpear bolas de poliestireno vaciadas con cinco diámetros di-
ferentes. Los registros fueron procesados de tal modo que modo que garantizaran que las mismas indicaciones fueran usadas 
tanto para discriminar el tamaño del hablante como en el caso de los sonidos de corta duración. Los resultados muestran que 
la indicación más importante son las resonancias más claras, pero también influyen las frecuencias superiores a 8 kHz. Los re-
sultados están explicados mediante un modelo de reconocimiento del tamaño basado en la fisiología, que fue creado en base a 
un modelo del sistema auditivo y cuyo elemento más importante es la transformada de Mellin. Este modelo puede prever cuál 
de los dos objetos es mayor. Nuestra conclusión es que indicaciones similares a las utilizadas para reconocer el tamaño del ha-
blante también son importantes para los sonidos de corta duración.

РАЗЛИЧЕНИЕ РАЗМЕРОВ ПРИ КРАТКОВРЕМЕННЫХ ЗВУКАХ: 
ВОСПРИЯТИЕ И МОДЕЛИРОВАНИЕ

Изложение

Человек может оценить размер объекта, слыша резонанс, который он вызывает. Хотя эта способность хорошо 
описана в литературе по отношению к периодическим звукам речи, в этом исследовании мы хотели бы исследо-
вать способность различения размера с помощью непериодических, кратковременных звуков, создаваемых путем 
ударов. Проведены три эксперимента с участием нормально слышащих людей (n=19), чтобы исследовать значе-
ние показателей, происходящих из акустического спектра в разных пределах частот. В исследовании использо-
валась запись резонанса звуков, происходящих с отдельного импульса, вызванного маталлическим шаром, уда-
ряющим в полые стиропорные шары пяти разных диаметров. Записи были переработаны таким образом, чтобы 
обеспечить использование таких самых показателей как для дискриминации размера говорящего человека, так 
и в случае кратковременных звуков. Результаты показывают, что самый важный показатель – самые отчетли-
вые резонансы, но влияние имеют также частоты выше 8 кГц. Результаты объяснены с помощью основанной на 
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Background

The human auditory system has arguably evolved to per-
ceive and understand the acoustic environment around us 
in order to communicate and survive. Acoustic signals ra-
diated from animate or inanimate objects contain infor-
mation about the object’s size, material and shape, and hu-
mans are capable of discriminating between two objects 
when they differ in any one of these properties. These sig-
nals can be transient in nature such as a knock on a door, 
where the action of striking the door causes the door to 
vibrate and resonate, or periodic as in the case of vowel 
sounds from human speech. Vowels can also be thought of 
as a train of transients, or pulse/resonance sounds, where 
the repetitions of the pulses equate to the vibration of the 
vocal folds, and the resonances give the information on 
the shape of the mouth and the length of the vocal tract, 
and therefore indicating the vowel uttered and the size of 
the speaker. The repetition of the same signal increases 
the signal to noise ratio against a single presentation, but 
even a single impulse carries enough information for cor-
rect discrimination [1] to a degree.

The vocal tract length of a human is directly related to 
the size of the human; for example a woman’s vocal-tract 
is typically larger than that of a child’s, and a man’s vocal-
tract is normally even larger again. Despite differences in 
vocal-tract length, the same speech uttered by all three hu-
mans can be recognised by a listener. It is an ability to ig-
nore the absolute frequencies of the resonances, but hear 
their relative positions with respect to each other that al-
low humans to identify which vowel has been uttered [2], 
thus effectively normalizing for size, and listening to shape. 
However, the listener can simultaneously extract infor-
mation about the size of the speaker by learning that the 
spectral envelope of the vowel formants shift up and down 
in frequency according to the size and that the spectral 

физиологии модели различения размера, которая была создана на основании модели слуховой системы, а ее са-
мым важным элементом является преобразование Меллина. Эта модель может предугадать, который из двух 
объектов больше. Наш итог –подобные указатели, как те, которые были использованы для опознавания разме-
ра говорящего человека, являются также важными для кратковременных звуков.

ROZRÓŻNIANIE ROZMIARÓW PRZY KRÓTKOTRWAŁYCH DŹWIĘKACH: 
PERCEPCJA I MODELOWANIE

Streszczenie

Człowiek jest w stanie ocenić rozmiar obiektu słysząc rezonans, który on wywołuje. Chociaż zdolność ta jest dobrze opisa-
na w  literaturze w odniesieniu do okresowych dźwięków mowy, w tym badaniu chcielibyśmy zbadać zdolność rozróżniania 
rozmiaru za pomocą nieokresowych, krótkotrwałych dźwięków wytwarzanych przez uderzenie. Przeprowadzone zostały trzy 
eksperymenty z udziałem osób normalnie słyszących (n=19) w celu zbadania znaczenia wskazówek pochodzących z widma 
akustycznego w różnych zakresach częstotliwości. W badaniu wykorzystano zapis rezonansu dźwięków pochodzących z po-
jedynczego impulsu wywołanego przez metalową kulę uderzającą o wydrążone kule styropianowe o pięciu różnych średni-
cach. Zapisy zostały przetworzone w taki sposób, by zapewnić, że te same wskazówki były używane zarówno do dyskrymi-
nacji rozmiaru osoby mówiącej, jaki w przypadku krótkotrwałych dźwięków.. Wyniki pokazują, że najważniejszą wskazówką 
są najwyraźniejsze rezonanse, ale wpływ mają także częstotliwości powyżej 8 kHz. Wyniki są objaśnione za pomocą oparte-
go na fizjologii modelu rozpoznawania rozmiaru, który został stworzony na podstawie modelu układu słuchowego i którego 
najważniejszym elementem jest przekształcenie Mellina. Model ten potrafi przewidzieć, który z dwóch obiektów jest większy. 
Naszym wnioskiem jest, że podobne wskazówki jak te wykorzystywane do rozpoznawania wielkości osoby mówiącej są tak-
że ważne dla dźwięków krótkotrwałych.

relationship between the formants represents the vowels 
[3]. This supports the hypothesis that some form of scaling 
transform (or size normalization) is applied to the sounds 
to remove any vowel confusion that may arise from deal-
ing with speakers of very different sizes.

In order to create images of periodic sounds, the Auditory 
Image Model (AIM) was originally developed on the ba-
sis of spectral information [4] to model pitch perception. 
AIM is a time-domain filterbank model of the auditory 
system that analyses complex periodic vowels. The out-
put of AIM is the Stabilised Auditory Image (SAI) – sta-
bilised and static visual representation of a complex peri-
odic signal. The modules of standard AIM (as described 
in [5]) carry out the tasks shown in Table 1.

Most bio-acoustic communication sounds contain inde-
pendent size and shape information, and it was suggest-
ed that one of the tasks of the auditory system is to per-
form a segregation of the size and shape information [6]. 
In this description, a normalisation procedure allows the 
listener to disregard the size information and keep the size-
invariant properties. In order to model this size normal-
isation, AIM was expanded by [7] to include the Mellin 
transform that normalised for size and created Mellin Im-
ages pertaining to shape only. The Mellin transform is ap-
plied to the output of AIM, the stabilised auditory images, 
and the resultant Mellin Images show the similar pattern 
for the same vowel spoken by speakers of different siz-
es. The success of this transform is based on the fact that 
the relationship between the resonances of the vowels re-
mains constant despite a change in the size of the speaker.

Humans can also estimate the size of objects that do not 
produce periodic sounds. The human auditory system is 
capable of discriminating between the sizes of objects when 
they are struck once, producing a single pulse resonance. 
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Carello et al. [8] showed that we can reliably estimate the 
absolute length of rods (from 30 cm to 120 cm) dropped 
on a linoleum floor. Participants were able to order rods 
from short to long without any standard of comparison. 
The authors concluded that the resonance frequencies of 
the rods due to the different length provided the acoustic 
cue for length discrimination and not amplitude or sig-
nal duration.

Houben et al. [9] performed an experiment where partic-
ipants listened to recordings of pairs of wooden balls with 
different diameters (between 22 and 83 mm) rolling over a 
wooden plate. The recordings were equated in both dura-
tion and acoustic energy to remove any signal length and 
intensity cues, though there still remained some slight tem-
poral information in the amplitude modulation of the real 
(not perfectly spherical) balls. Participants could identify 
the larger ball in all pairs except for those with the small-
est diameter. The authors suggested that the differences 
in spectral centroid frequency (SCF) play a larger part in 
the size discrimination abilities of their participants than 
temporal cues, but they could not discount the amplitude 
modulation or other interferences caused by the action of 
rolling. Humans have also been shown to be able to dis-
criminate the size of wooden balls dropping on plates [10]. 
The authors showed that the acoustic energy of the sig-
nals at low frequencies was the most important cue and 
listeners only needed to hear the first bounce. This indi-
cated an ability to detect size from a single very short-du-
ration impact sound.

Humans have the ability to discriminate between the siz-
es of objects that produce transient non-periodic sounds, 
but it is still not clear which acoustic cues - spectral, tem-
poral or intensity – are most important. Spectral informa-
tion, notably the resonances, is vital in speaker size dis-
crimination [6], and based on this AIM with the Mellin 
transform was developed for speaker size normalisation. 
However, AIM is not capable of creating stabilised audi-
tory images of transient single pulse-resonances because 

the strobing mechanism in AIM requires at least two pe-
riods of a waveform [5].

Here we investigate whether this ability to discriminate 
size relies on the same spectral cues as in speech discrim-
ination. To do so, real acoustic signals were recorded us-
ing polystyrene spheres that were struck with a small met-
al ball. We report a series of subjective experiments that 
determine the importance of spectral cues and describe a 
new model that can discriminate size of transient signals 
based on the same cues. Using objects of the same shape, 
we show that the model can discriminate between differ-
ent sizes, and correctly order the objects by increasing size.

Material and Methods

Three sets of polystyrene Styrofoam spheres of 5 sizes (70 
mm, 80 mm, 90 mm, 100 mm and 120 mm diameters) 
were suspended from the ceiling in an acoustically insulat-
ed room, and struck by a pendulum: a metal ball bearing 
of 10 mm diameter (5.6 g). Polystyrene spheres were cho-
sen because their sounds provide a high ecological validi-
ty (i.e. people would usually have experienced the sounds 
before) and they have a low impedance, thus creating rel-
atively long and loud sounds with a rich harmonic struc-
ture. Table 2 indicates the sizes and masses of the spheres 
used. Density varied in the range from 20.4 to 22.9 kg/m3. 
Sounds were recorded through a free field microphone in 
a sound proof room. The microphone was placed 11 cm 
radial to the point of impact. All efforts were made to en-
sure the impact position and force applied was as uniform 
as possible. Fifteen sets of recordings were made: each 
sphere was struck 100 times and recorded, making a to-
tal of 1500 recordings with which viable averaged signals 
for each size were created.

Each recording was band pass filtered (Butterworth 4th 
order) between 100–16,000 Hz. The filtered signals were 
then edited using a MATLAB script to the same length and 
aligned to the point of the first negative peak. Within each 

Modules of aim-mat Auditory System equivalent

Pre-cochlear Processing Band-pass filtering of outer ear & ear canal

Gammatone filterbank Spectral analysis of the basilar membrane

Neural Encoding Half-wave rectification – simulation of the uni-directional movement of the inner hair 
cell stereocilia
Compression – simulates the non-linear input-output function of the hair cell 
response
Low pass filtering – simulates the progressive loss of phase-locking of neuronal 
action potential with higher frequencies

Strobed Temporal Integration Averaging over periods of a continuous signal to stabilise and create static stabilised 
auditory image

Table 1. �Modules in aim-mat, and the equivalent biological process (from [5])

X.Large (XL) Large (L) Medium (M) Small (S) X.Small (XS)

Diameter 120 mm 100 mm 90 mm 80 mm 70 mm

Mass 17.95 g 11.36 g 8.22 g 5.61 g 3.40 g

Table 2. The dimensions and masses of the recorded polystyrene spheres used in all experiments
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set of recordings, the signals were screened automatically 
for uniformity, and those that had RMS values greater than 
two standard deviations from the mean of their set were re-
moved. Remaining signals were averaged to create one sig-
nal per size that all had the same RMS and length. Each sig-
nal was cut off after 50 ms, but almost all energy is between 
10 and 30 ms. There was no perceptible contribution of the 
sound of the striking object due to the large difference in 
acoustic impedance. Figure 1 shows the resulting averaged 
time series of all 5 signals and Figure 2 shows the respec-
tive spectral density plots. The waveforms look similar but 
the spectra reveal differences mainly in the position of the 

resonant peaks. The first broad frequency peak between 0 
and 2000 Hz is very similar in all signals and is called F0 in 
this paper. The resonances are visible as subsequent higher 
frequency peaks. These are very different between spheres 
and specifically the first peak (called F1 in this paper, indi-
cated by black arrows in the figure) shows an increase with 
decreasing sphere size. Further resonances are called F2, etc.

Three experiments were conducted in order to determine 
the importance of the spectral cue in discriminating the 
size of the described spheres, and to determine the most 
informative region of the spectrum. In experiment 1 we 
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Figure 1. �Time series representations of 
the averaged versions of the 5 
sphere signals
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left. Higher resonances are vis-
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investigated if the recordings are valid sounds by ask-
ing whether participants could tell which of two spheres 
sounds larger. Experiment 2 investigated if spectral cues 
are important for size discrimination used warped signals. 
Finally in experiment 3 the signals were filtered in various 
ways to determine which region of the spectrum is most 
informative for size discrimination. High-pass, low-pass 
and band-stop filtering was used, with extra focus on the 
importance of the strongest resonance.

Testing procedure

Thirty-two participants between the ages of 18 and 35 years 
(average 26 years) recruited from the University of South-
ampton (24 males) completed all three experiments. All 
reported normal hearing. The testing was split into five 30 
minute sessions, one session a week. Level of stimulation 
was set to 75 dB(A) as calibrated by an artificial ear for a 
50 ms signal. Because of the impulsive nature of the signals 
this was a comfortable listening level. At the start of the 
first session the method for the experiment was explained 
and participants were given time to familiarise themselves 
with the polystyrene spheres (for example by bouncing or 
striking them). After familiarisation all reported that they 
could easily hear the size differences. During the experi-
ments the spheres were visible to the subjects but they were 
not allowed to touch them. Apart from this familiarisation 
there were no training sessions for any experiments. No 
feedback of correct results was given at any stage.

Of the 32 participants, 13 were excluded for the analysis 
later because their results were inconsistent leaving 19 in-
dividuals. Consistency was measured by a reliability in-
dex calculated as follows: each time a repeated presenta-
tion (only unfiltered and unscaled sounds were counted) 
gave the same response the index was increased by one; 
each time a different answer was given it was reduced by 
one. A person guessing would score 0. Only participants 
that scored a normalised score of at least 0.6 on average 
were considered for further analysis. Note that our def-
inition of reliability does not indicate correctness, only 
consistency. Reliability was highly correlated with musi-
cal ability (self-reported): 40% of the non-musical partic-
ipants were reliable compared to 68.2% of those that were 
musical. Note that the criterion of 0.6 is rather strict. We 

deliberately chose a high reliability threshold criterion be-
cause we aimed to investigate the influence of specific cues 
and not general population ability levels and we chose to 
exclude all but the most reliable participants. All but 4 
of our 19 consistent participants performed significantly 
above chance level on average. All experiments were car-
ried out under the approval of the Human Experimenta-
tion Safety and Ethics Committee, Institute of Sound and 
Vibration Research, University of Southampton.

All recorded data was analysed statistically using SPSS. 
Homogeneity of variance was tested using Levene’s test 
and normality with Shapiro-Wilk tests. One-sample or 
paired sample t-tests were used for normally distributed 
data, Wilcoxon Signed Rank tests otherwise. Repeated-
measures ANOVAs were carried out using a Greenhouse-
Geisser correction and significant differences between sets 
were tested using a Bonferroni Post-hoc test. All reported 
significances are on a 5% level.

Results

Experiment 1: Size discrimination of polystyrene 
spheres

A size discrimination task was carried out by presenting 
pair-wise recordings to test if participants could tell the 
difference between the sizes of the spheres from the sound 
they emitted when struck. Each presentation consisted of 
five identical signals, 200 ms apart. Each signal was 50 ms 
long. In a 2-alternative forced-choice (2AFC) paradigm, 
only neighbouring pairs were compared to each other, 
i.e. XS vs. S, S vs. M, M vs. L, and L vs. XL, and the ques-
tion asked to participants was “Which object sounds big-
ger?” One test set involved signals taken from the batch 
of averaged signals, and the other contained signals tak-
en at random from the library of 1500 recordings to test 
how robust size discrimination was with original (not av-
eraged) sounds.

Results showed that discrimination was significantly better 
with averaged signals than with the original un-averaged. 
Therefore averaged signals were used in subsequent experi-
ments. On average, participants could correctly identify the 
bigger object at 90% (SD ±7.9) (Figure 3). All comparison 
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pairs are significantly above chance level. Participants indi-
cated in informal feedback that the task was easy. XS vs. S 
and M vs. L were answered correctly by all participants apart 
from one, shown as an outlier. S vs. M, and L vs. XL pairs 
are significantly lower than the other comparisons, prob-
ably because of differences in the SCF as discussed below.

Experiment 2: Size discrimination of scaled signals

From the results of experiment 1, we are confident that size 
discrimination of the polystyrene spheres was possible. In 
order to design a subsequent model of size discrimination 
we investigated the importance of the spectral cue in ex-
periment 2. The rationale behind this experiment was to 
attempt to confuse the listeners by adjusting the spectral 
content of each signal in several ways so as to adjust its per-
ceived size. If this manipulation was successful, and partic-
ipants could be fooled into perceiving sizes differently, we 
would establish the importance of the resonance frequen-
cy cues. If, however, this manipulation is not successful, 
other cues (for example temporal modulation or relative 
intensities) must be taken into consideration.

The simplest method of changing the perceived size is to 
scale the signals in frequency or, which is equivalent, in-
crease or decrease the playback sample rate (PSR). This 
method is motivated by more complex speech vocoders 
that change perceived speaker size such as STRAIGHT 
(Kawahara et al, 1999). Preliminary attempts at using this 
method (data not shown) proved unsuccessful: partici-
pants (n=5) reported that the signals sounded confusing, 
because they heard two or more harmonics that contra-
dicted moving in different directions, i.e. one increased in 
pitch with increasing PSR while the other decreased. This 
made the decision to choose which sound came from the 
bigger object impossible. Therefore further attempts in 
this direction were halted and a more suitable method of 
altering the size perception was developed.

An improved method of scaling is based on the frequen-
cy of the first resonance (F1) in each size. This is moti-
vated by the fact that it has the most energy apart from 
the F0 and is distinctively different in each sphere. Spec-
tral analysis of the averaged signals show, apart from F0, 
that F1 contains at least 15 dB more power than all oth-
er resonant peaks (see Figure 2). To modify the signal of 
one sphere to sound like another, the spectrum was scaled 
according to the ratio between its own F1 and that of the 
sphere of desired size. That way, each signal was scaled 
to its neighbours, for example S to M and labelled as MS 
(see Figure 4). Other than simply changing PSR, signals 
that are manipulated in this way do not have confusing 
harmonics. In experiment 2, signals were only scaled to 
their neighbouring sizes so as to avoid any distortion due 
to large scaling factors, i.e. Medium was scaled to both 
Large and Small, but X.Large was only scaled to Large.

The stimuli pairs used in this experiment could have either 
different F1 values (test 1) or the same F1 value (test 2). The 
rationale for choosing pairs with different but manipulat-
ed F1 was to find out if participants could be fooled by an 
F1 different to its original value; the rationale for choosing 
pairs with the same F1 is to find out if participants have 
to resort to guessing because of the spectral similarities.

Stimuli pairs are illustrated in Figure 4. The following types 
of pairs were presented to the participants: pairs with dif-
ferent F1 (as part of test 1) are illustrated as hollow lines in 
figure 4. Such pairs could be an unscaled signal compared 
to a version of itself that is scaled for either a lower F1 (such 
as M vs. LM) or a higher F1 (L vs. ML). It can also be a sig-
nal scaled for a lower F1 compared to a signal with a high-
er F1 (LM vs. ML). Pairs with the same F1 values (test 2) 
are illustrated with solid arrows in Figure 4. These pairs 
consist of a signal compared with either a signal scaled up-
wards to match its F1 value (such as S vs. SXS) or a signal 
scaled downwards to match its F1 value (S vs. SM). Also a 
pair could consist of two signals scaled to have the same F1 
(SXS vs. SM). In total there were 23 pairs in this experiment.

Signals were scaled in MATLAB using the ratios between 
the F1s for each sphere size as a scaling factor, and the new 
signals were created by sample-by-sample interpolation. 
The increase factors ranged from 1.08–1.14, and the de-
crease factors ranged from 0.82–0.92. The resultant signals 
were the same length and had the same RMS energy as the 
originals. The higher resonances F2 and F3 also aligned 
well. As in experiment 1, the participants were asked the 
question, “Which sound comes from the bigger object?” 
using the 2AFC method.

We hypothesised for the first test (where stimuli pairs 
have different F1) that participants would choose the sig-
nals with the lower F1 as the larger signal, regardless of 
whether or not it was a scaled signal. Accordingly, we hy-
pothesised that in test 2 (where stimuli pairs have the same 
F1 and thus assuming the scaling method sufficiently re-
moved the spectral cue); participants would not be able 
to reliably decide and had to guess.

Results show that in test 1 (different F1) participants con-
sistently and significantly chose the signal with the lower 
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Figure 4. �Schematic matrix indicating the signals used 
in the two tests of experiment 2. According to 
their physical size, signals on the main diagonal 
are labelled (XL, L, M, S, XS). Off diagonal signals 
are labelled as their presumed perceived sizes 
after scaling: e.g. LM, indicates that the signal 
L had been created by scaling the signal M to 
have the same F1 as L. Signals in each row have 
the same F1, and signals in each columns have 
different F1 values. The arrows indicate the ex-
amples outlined in the text
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F1 as the larger sound whether or not it was scaled (84.5% 
vs. 15.8%, SD ±12.0). This result confirms our hypothesis. 
We conclude that the spectral cue given mainly by F1 is 
important for size discrimination. In test 2 (where pairs 
had the same F1), contrary to expectation, participants 
chose the ‘wrong’ answer consistently: signals that were 
scaled up from smaller were chosen over unscaled (65%, 
SD ±9.0); unscaled were chosen over those scaled down 
from bigger (71%, SD ±9.4) and those scaled from small-
er was chosen over those scaled from bigger (65.8%, SD 
±4.2). In all three cases, results are significantly higher than 
the hypothesised chance level of 50%.We conclude from 
this result that F1 is not the only cue that can be used for 
size discrimination. Visual inspection of the spectra shows 
that F2 and F3 were well aligned and that the frequency 
region of interest is probably above 8 kHz.

In order to explore in detail which frequency range is im-
portant for size discrimination, differently filtered signals 
were investigated in experiment 3.

Experiment 3: Size discrimination of filtered signals

Experiment 3 was carried out to investigate the importance 
of different frequency regions for size discrimination. Here, 
the same signals that were used in experiment 1 were fil-
tered using low-pass (LP), high-pass (HP) or band-stop 
filters (BS) (4th order Butterworth), carefully choosing cut-
off frequencies to either keep or remove specific parts of 
the spectrum containing resonances. Based on the results 

of experiment 2 we know that F1 is important, but it is 
not the only frequency cue that can be used for size dis-
crimination. In order to investigate this further, here we 
created signals that were characterised by muting certain 
spectral regions and tested if size discrimination was still 
possible. We hypothesised that F1 is the most important 
cue, but that in the absence of F1 other cues can be used. 
In order to investigate this we designed signals that were 
identical apart from F1 and we expected listeners to per-
form better when F1 was present. Secondly, we hypothe-
sised that if F1 is absent, high frequency information above 
8 kHz can be used for size discrimination.

Six kinds of signals were generated from each original 
sphere size: ‘low pass filtered’ isolated the effect of F1 in 
the absence of high frequencies; ‘high pass filtered’ isolat-
ed the effect of F1 in the absence of F0; ‘band-stop filtered’ 
investigated the effect of removing F1 entirely. Table 3 
shows the different types of filters and the cut-off/band-
stop frequencies used.

Results of experiment 3 are shown in Figure 5. Participants 
performed significantly above chance in all 6 conditions.

All filtered signals produced significantly lower mean 
scores than unfiltered (Unf) signals (90.8%, SD ±7.9) 
apart from LPwithF1 (87.9%, SD ±9.4). Removing F1 
alone significantly decreased performance from Unf to 
BSnoF1 (81.8%, SD ±5.4). This confirms that F1 is in-
deed the most important frequency cue when estimating 

Abbreviation Type of signals in the set Resonances present

Unfiltered Unf Averaged unfiltered signals F0, F1, F2, F3…

Band-stop Filtered BS no F1 No F1 Between 5% below and above F1 F0, –, F2, F3…

Low-pass filtered
LP with F1 With F1 c/o 5% above F1 F0

LP no F1 No F1 c/o 5% below F1 F0, F1

High-pass Filtered
HP with F1 With F1 c/o 5% below F1 F1, F2, F3…

HP no F1 No F1 c/o 5% above F1 F2, F3…

Table 3. �The filter types applied to each signal in experiment 3. (c/o = cut-off frequency of filter). Specific values of each 
F1 and F2 are shown in Table 4. Position of the other resonances can be seen in Figure 2
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Figure 5. �Results from experiment 3. 
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affect the size discrimination. 
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the size of objects in realistic environments. However, 
while in the cases of ‘band stop’ and ‘low pass’ removing 
F1 decreases performance, removing F1 in the ‘high pass’ 
condition surprisingly increases performance significant-
ly (HPwithF167.8%, SD ±7.7; HPnoF1 75.8%, SD ±11.5). 
This suggests that high frequencies provided more infor-
mation than we assumed based for example on the range 
of natural speech sounds.

Analysis of the differences provides a further cue to ex-
plain this improvement in the high pass filtered sounds: 
Table 4 shows that the average differences between F3 
values (840 Hz) is larger than the differences between F2 
values (775 Hz), which are larger than the differences be-
tween F1s (581.5 Hz). It could be that the lower F1 res-
onance masks the higher ones due to upward spread of 
masking. So although the task was easy in both cases, the 
removal of F1 facilitated an improvement in scores due to 
larger differences between F2.

Transient Auditory Image Model – tAIM

In order to explain the observed results we propose here a 
model to analyse and compare transient signals, and to car-
ry out automatic size discrimination. The model is based 
on the Auditory Image Model (AIM) and was originally 
described by [4]. The version used as the basis of our mod-
el is aim-mat, the MATLAB implementation of AIM [5].

The original AIM analyses periodic vowel signals by way 
of spectral analysis and pattern stabilisation. AIM pro-
duces ‘stabilised auditory images’ that captures the fine 
structure of repeated sounds. In order to normalise for 
size [2] added the Mellin transform of the model to pro-
duce the same outputs for speakers of different size. Due 

to the strobing mechanism that is used in the image sta-
bilisation process, AIM only works for stimuli that con-
tain at least 2 periods and produces no outputs for tran-
sient signals that are not periodic.

Here we present a modification of AIM for the analysis of 
non-periodic, transient signals called transient Auditory 
Image Model (tAIM) that also performs pattern analysis 
for size comparison.

The modules of tAIM were simplified compared to aim-
mat in order to reduce the computational expense of signal 
analysis, but also to minimise the processing and filtering 
while retaining spectral analysis and producing a compara-
ble (however not stabilised) auditory image. Table 5 com-
pares the modules of aim-mat and tAIM.

Resonant frequency values (Hz) Differences between resonances (Hz)

X.Large Large Medium Small X.Small L–XL M–L S–M XS–S Average

F1 3531 4048 4909 5340 5857 517 861 431 517 581.5

F2 5254 5943 7062 7235 8354 689 1119 173 1119 775

F3 6632 7665 9130 9560 9991 1033 1465 430 431 839.75

Table 4. �Left: frequencies of the first 3 resonances of all 5 spheres. Right: differences between F1s, F2s and F3s. The right-
most column shows the average differences

aim-mat tAIM

Pre-cochlear Processing –

Gammatone filterbank 
100–6400 Hz

dcGC filterbank 100-10k Hz

Neural Encoding –

Strobed Temporal Integration Alignment of Maxima

Stabilised Auditory Image Simplified Auditory Image

Pattern Normalisation Pattern Normalisation

– Mellin Phase analysis for Size 
comparison

Table 5. �Comparison of the modules of AIM and the mod-
ules of the newly created tAIM

Size/Shape Properties Cone Egg Heart FIMO sphere

Large
Weight (g) 75.4 7.7 8.4 550

Maximum geometric dimension (cm) 31.3 10 11.2 11

Medium
Weight (g) 26.3 5.2 4.6 520

Max dimension (cm) 26.1 8.4 8.3 10

Small
Weight (g) 13.5 2.3 2.0 515

Max dimension (cm) 20.4 5.6 5.5 9.5

Table 5. �Properties of objects used to test tAIM. The cones, eggs and hearts were made from the same material as the 
polystyrene spheres. FIMO spheres are much heavier but are in the same range of size
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Figure 6 shows the flow diagram of tAIM. The parame-
ters in the original aim-mat limited spectral analysis of the 
vowels to between 100 and 6400 Hz in order to simulate 
pre-cochlear processing in the important speech range. 
However, we demonstrated above that the frequency range 
above 8 kHz is important for size discrimination. Thus, 
in tAIM we use a filterbank of 100 channels spaced from 
100 Hz to 10 kHz on an ERB scale – this creates an im-
age showing the motion of the basilar membrane (BMM). 
In contrast to aim-mat, a dynamic and compressive gam-
machirp auditory filter (dcGC) is used here as a simulation 
of the basilar membrane. The dcGC consists of a passive 
gammachirp filter, and a high-pass asymmetric function 
that causes the filter to widen and its centre frequency to 
increase slightly as the stimulus level increases [11]. We 
chose this filter for tAIM because compression is simulat-
ed more realistically in the dcGC filterbank compared to 
the passive gammatone filter, and also removing the half-
wave rectification and low-pass filtering serves to retain 
as much information about the signal as possible for the 
eventual automatic size discrimination process.

The strobing process included in aim-mat was not required 
here with a non-periodic stimulus. Instead, a method of 
alignment is used which involves arranging the points of 
maximum amplitude in each frequency channel so that 
they occur at the same time interval point, T0. The re-
sult is a transient version of the stabilised auditory image 
called here the transient Auditory Image (tAI).

The next step in tAIM is to carry out a Mellin transforms 
described in detail by Irino & Patterson [6]. Based on the 
results of this transformation either a size normalisation 
or size discrimination can be carried out. This is illustrated 
in Figure 6 as a branch of the Mellin transform box and is 
shown in order to highlight how tAIM differs from AIM. 
While AIM uses the Mellin ‘spatial frequency’ in order to 
do size normalization, tAIM concentrates on the comple-
mentary Mellin ‘spatial phase’ information that contains 
the size information. We have called this the ‘model size 
variable’ (MSV) and will investigate if it correlates with 
the physical size of objects.

In order extract the relevant size information a Fourier 
transform (FT) was performed on the T0 time column. 
This is done at this specific point because T0 is the point 
of highest energy in each channel and thus contains the 
most useful information regarding size and shape of the 
analysed object. The frequency part of the FT was dis-
carded and the phase part (which we call Mellin phase) 
contains the relevant size information. The output of the 
model is the Mellin phases and this can be used for auto-
mated size discrimination when compared to the Mellin 
phase of another objects of the same shape and material. 
The results of the psychophysical experiments above in-
dicate that F1 is the most important cue. This could have 
been simulated in the model by peak-picking and com-
paring the respective resonances. However, since the re-
sults above also demonstrate that size discrimination is 
possible without F1 based on a combination of higher 
frequencies, a different approach was chosen that reflects 
the overall phase structure rather than single resonances. 
Therefore we chose to calculate the average rate of change 
of the Mellin phase. Smaller values indicate larger objects 
because smaller objects produce a more fluctuating Mel-
lin phase due to more and higher resonance frequencies. 
The calculation of an average is also more robust than pin-
pointing specific resonance frequencies.

Testing tAIM

The model described above was used to process a variety 
of stimuli in order to test its validity. Signals ranged from 
simple synthesised sounds like multiple damped sinusoi-
dal sounds and vowels to recordings of real sounds. Re-
corded sounds were the spheres mentioned above, spheres 
made from modelling clay and other shapes made from 
polystyrene. Mellin phases of all objects were calculated by 
processing the wave files through the model. The results 
of the output of tAIM for the synthesised sounds demon-
strated that it works as expected (data not shown) for the 
idealized synthesised sounds. In the following we there-
fore show the more interesting results of real recorded sig-
nals of the polystyrene objects (spheres and other shapes).

The calculated MSVs of the recorded polystyrene spheres 
are shown in Figure 7. The top panel shows MSVs from 
original signals, the bottom panel shows the results from 
signals when F0 is removed. The data demonstrate that 
MSVs of spheres are ordered in the same way as the size 
of the original spheres. Pearson’s correlation coefficient is 
0.86 for the full signals and 0.98 for the filtered signals.

The differences between paired MSVs are not constant. 
The differences XS vs. S and M vs. L are bigger than S vs. 
M and L vs. XL. These differences correspond well with 
the observed psychophysical results of direct comparison 
shown in Figure 3: the smaller the difference in MSV, the 
larger the number of errors in comparison.

The bottom panel shows the results of high pass filtered 
sounds where F0 is removed. We expect the model to per-
form well for these signals because the MSV in these cas-
es is mainly due to the position of the F1 resonances. As 
visible in Figure 2, the F0 resonances are all much broad-
er than the higher resonances and roughly cover the same 
frequency range. The F0 is physically mostly the product 
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tAIM

Filterbank
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Size Normalisation
Melling Image

Mellinn
Transform

HP-AF

Auditory Image

Size Discrimination

FT of T0

T0 Phase Analysis 

Model Size Variable
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Figure 6. �Flow-chart showing the processing blocks of 
tAIM and the automatic size discrimination 
modules. For a detailed description see text. FT 
= Fourier Transform
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of the broadband response of the impact of the striking 
ball, not a resonance of the sphere, and it thus carries lit-
tle size information. However, because of its high energy 
it dominates the calculation of the MSV in the model. By 
removing it, the model concentrates more on the energies 
around F1 and higher resonances that contain more size 
information. This can be seen in Figure 7 in the bottom 
panel: when removing F0 the correlation is improved. Al-
though the differences in some cases are small, bigger ob-
jects always have larger MSV.

To test tAIM further, we also explored if it can predict rela-
tive sizes between other objects. We chose a range of poly-
styrene shapes that were readily available from a craft shop. 
Shapes tested were cones, eggs and hearts and each came 
in three different sizes. We also tested a range of spheres 
constructed from FIMO polymer modelling clay. Proper-
ties of all objects are shown in Table 5.

It is impossible to describe the relative geometric size of 
different shaped objects in one number. To compare sizes 
relative between object families, we only display the ‘max-
imum dimension’ in Table 5 which is the longest physical 
length of every respective object: for the cone and the egg 
this is the height, for the heart this is the difference between 
bottom and highest point. For each family of shapes, the 
relationship between dimensions is a perfect descriptor of 
their scale, but this description is only a rough approxima-
tion between families of different shapes. The resonances 
of each object are a consequence of the three dimension-
al geometric properties. It is impossible to capture these 
in one number and therefore we can only represent one 
aspect of the size parameter at a time. We chose the max-
imum geometric dimension for simplicity. Any other de-
scriptor, like volume, would also have been possible and 
would have yielded the same qualitative results.

Sounds were recorded in the same manner as the spheres. 
Prior to analysis by tAIM, the signals were band-pass fil-
tered with cut-offs at 100 Hz and 16 kHz, and normal-
ised to RMS =1. Averages of up to three recordings for 
each size were calculated. The FIMO sphere sounds were 

recorded differently, because the impact with a small met-
al ball would not have been loud enough. FIMO spheres 
were recorded by using a Newton’s cradle style of appa-
ratus, colliding two spheres of the same mass which were 
hanging from a wooden frame at 20 cm apart. Both spheres 
were pulled to one metre from their rest position in op-
posite directions, and were then allowed to fall freely. The 
resultant signal was the collision between the two spheres.

Figure 8 shows the MSVs obtained from tAIM for all ob-
jects, including the polystyrene spheres. All object families 
show the same behaviour: bigger objects produce higher 
MSVs. Correlations within each family are all positive and 
significant. The only signals that provided misleading re-
sults were the medium and large cones; this can probably 
be explained by the quality of the recordings of these ob-
jects. The correlation between all families and sizes is weak: 
r=0.155 and not significant, indicating that the model is 
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less useful for relative size discrimination of objects of dif-
ferent shapes. This corresponds to psychophysical results 
which will be analysed in a subsequent paper.

Discussion

The psychophysical experiments presented in this study 
were carried out to identify the importance of the spectral 
cue in size discrimination of transient signals. We estab-
lished that the frequencies of the main resonances carry 
the most important size information. In experiment 1 it 
was demonstrated that listeners can discriminate the size of 
transient signals from polystyrene spheres to a high stand-
ard without training. These results confirmed the validity 
of the used stimuli. In experiments 2 and 3 signals were 
spectrally scaled in order to intentionally deceive partic-
ipants to test the importance of F1 Results show that the 
signal with the lowest F1 was consistently chosen as the 
larger signal, regardless of its size before scaling. This in-
dicates that spectral information plays a major role as a 
cue for size discrimination of transient signals. This dem-
onstrates, to our knowledge for the first time, that there is 
useful information available for size discrimination above 
8 kHz. We conclude that listeners base their size judge-
ment mainly on F1 if available and on higher resonances 
when it is not available.

F1 is the most important psychophysical cue for size dis-
crimination and it is also very prominent for a topologi-
cal reason: geometrically, F1 is related to the diameter of 
the sphere and the shear waves across its centre. This can 
be shown by calculating the first mode of resonance as the 
relationship of speed of sound in polystyrene (~813 m/s) 
and twice the sphere diameter. The values are within 6% of 
each other. Other resonances are a result of higher modes 
and surface waves. F0 is probably the result of the impact 
between the small metal ball and the polystyrene spheres. 
It is very broad in frequency compared to the other res-
onances and its maximum is flat. Therefore F0 peak fre-
quency is not a good predictor of size. Furthermore, the 
results of experiment 3 show that F0 alone is not as good 
a cue for size discrimination as F1. Further studies could 
include a physical simulation in order to investigate the 
physical sources of the resonances. This would shed fur-
ther light on which physical aspects of objects of differ-
ent shape and size affect the spectrum and the perception.

The results of our experiments are in line with those of 
Houben, Kohlrausch & Hermes [9] and Grassi [10] who 
also showed that participants were able to discriminate 
size of spheres (Grassi – 4 spheres, 16 participants; Hou-
ben – 7 spheres, 8 participants). However, their results 
might have been affected by cues other than the size of 
the spheres because the sounds came from single presen-
tations of rolling or bouncing balls, and also from the ob-
jects onto which the spheres fell. In our experiments the 

sounds were controlled in order to ensure that the only 
available cues were from the spheres, thus increasing the 
validity of the results. We also only selected clear record-
ings of impact sounds and averaged over 300 impacts. As 
shown in experiment 1, participants were significantly 
better at discriminating the averaged signals. We thus be-
lieve that our results are more repeatable because of the 
more reliable representations of the sphere sounds. How-
ever, this came at the cost of ecologic validity.

Despite this the average score across all pairs of averaged 
unfiltered and unscaled signals (in experiment 1) was not 
perfect at 90.1%. Participants thus demonstrated a very 
good, but not perfect ability to discriminate between the 
sphere sizes. However, participants were untrained; they 
had no previous exposure to any of the stimuli and there 
was no feedback given at any stage. This demonstrates that 
the task of extracting size from a single impulse sound is 
a natural human ability for most people. However, we ex-
cluded 11 out of 31 participants because they were not con-
sistent in their answers (note that they could have been 
consistently wrong, but they had to be consistent). It would 
be interesting in future studies to investigate the reasons 
why these people are unable to do the task, (if they ‘size-
deaf ’) and to what degree this ability is correlated with 
pitch discrimination ability.

The tAIM model presented in this study is an alteration 
of the well-known Auditory Image Model AIM [12]. AIM 
was originally developed as a model to predict the pitch 
of periodic sounds, and was later extended to normalise 
for speaker size using the Mellin transform. The transform 
works on the basis of the approximately constant relation-
ship between formants for vowel identification regardless 
of speaker size. For example the relationships between the 
first three formants of the vowel “A” are very similar for a 
man, a woman or a child even though the absolute formant 
frequencies are very different [6]. We show here that the 
same is true for spheres of different size. The similarities 
in the shape of the spectral envelopes can be seen in Fig-
ure 2, and similar to the formants of vowels, Table 6 shows 
that the resonances of the spheres have a near constant re-
lationship: all ratios are within 10%. However, the vowel 
sounds consist of many repetitions, and AIM makes use 
of the repeated nature of the signals by averaging. Here we 
show that the single transient impulse signal of a struck 
object is similar in its spectral pattern to a vowel sound 
but much shorter. It has been suggested that single impulse 
communication sounds evolved very early on in fish and 
were useful for simple communication [1]. Later animals 
presumably extended this by repeating the same message 
several times in short succession thus increasing the SNR 
and giving the listeners multiple looks of the individual 
waveforms. Voiced speech sounds can be described by a 
repetition of identical single impulse sounds that are only 
5–10 ms long. Nevertheless, the cues used for identifying 

Ratio X.Large Large Medium Small X.Small

F2/F1 1.49 1.47 1.44 1.35 1.43

F3/F2 1.26 1.29 1.29 1.32 1.19

Table 6. Ratios between the first sphere resonances after F0
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both seem to be the same. The results of our experiments 
confirm that single impulse sounds carry useful informa-
tion about size and potentially about the shape of the ob-
ject. The role of different shapes on perception of impulse 
sounds will be investigated in a future paper.

In contrast to AIM which cannot process single non-pe-
riodic sounds, tAIM was developed to process transient 
sounds such as by single pulse resonances, but also to re-
tain as much spectral information about the signal as pos-
sible, especially in the higher frequencies that are usually 
ignored in AIM. A simplified alignment method was de-
veloped for tAIM that replaced the strobed temporal in-
tegration and image stabilisation in AIM. Both tAIM and 
AIM produce as output an auditory image that is suitably 
stable to perform the Mellin transform. The second ma-
jor difference between the models is the use of the Mellin 
transform: the transform separates the size information 
(‘Mellin phase’) from the shape information (‘Mellin fre-
quency’). AIM uses the frequency information to create 
size normalised images (‘Mellin images’), whereas tAIM 
carries forward the phase information for size analysis. It 
is worth noting that despite the fact that our signals are 
not periodic tAIM can also be used for successful size nor-
malisation and to create Mellin images.

We conclude that the output of our model calculation, the 
Mellin size variable (MSV: calculated by the group delay 
of the Mellin phase), is a good descriptor of the percep-
tion of sizes of objects within the same shape family. To 
our knowledge, this is the first model that has been de-
veloped to calculate the sizes of objects from a single im-
pulse sound.

We also tested a different method of extracting size infor-
mation based on the spectral centroid frequency (SCF) of 
the auditory image. This was motivated by Houben et al. 
[9], who suggested that SCF of the spectrum provided a 
cue for size discrimination. In the second test of experi-
ment 2, participants were not confused when the F1 val-
ues of different sizes were matched. We conclude that de-
spite F1s being scaled to be the same (and F2 and F3 also 
being well aligned) other information in the scaled sig-
nals was used for size discrimination. Since F1-F3 val-
ues are all in the lower frequency regions (below 8 kHz 
in most cases) this implies that this additional informa-
tion must be in higher frequencies regions above 8 kHz. 

Simple calculation of SCF for the sounds used in this ex-
periment shows that SCF is indeed correlated with size 
perception; however, a closer inspection raises doubts. 
First, discrimination was better for the HPnoF1 signals, 
despite their SCFs being higher than the HPwithF1 sig-
nals (8.5–11.5 kHz, and 6.1–9.8 kHz respectively). If SCFs 
are the most important cue then we would expect that dis-
crimination is best at low SCFs. Since this is evidently not 
true in the case of the HPF signals, this suggests that the 
differences between resonances, rather than the absolute 
SCF values, are the important cue for discrimination. Sec-
ondly, there is not always a correlation between SCF and 
size. For example in some cases of the BS and LPwithF1 
signals, SCF increases with increasing size. We conclude 
that SCF is not a good descriptor of size perception in all 
cases and the presented model therefore uses the relative 
position of the resonances.

tAIM is not a perfect model that works in all circum-
stances. As it is, the model is limited to comparing two 
objects with the same shape. Humans have to a degree 
the ability to estimate the absolute size of objects of dif-
ferent shapes [8]. The model does this to a small degree 
(see Figure 8), but obviously there is other information 
that humans also use for object identification including 
its shape and material. Within object families tAIM did a 
good job for all tested objects, but it differs from the psy-
chophysical results in one important point: the relevance 
of F0. While psychophysically F0 contributed construc-
tively to correct size discrimination; in the model it dom-
inates over F1 energetically and thus reduces the accura-
cy of results (see Figure 7). Nonetheless, Figure 8 shows 
the MSVs from signals with F0 remaining and the cor-
relation between MSV and size is strong for all objects 
within shape family.

Conclusions

The presented experiments demonstrate the importance 
of the spectral cue in the auditory size discrimination of 
transient signals. The cues for size discrimination are sim-
ilar in transient sounds and in speech sounds; single im-
pulse responses can therefore be thought of as a simple 
model of voiced speech. A mathematical model for the 
analysis of transient signals based on the Mellin transform 
(tAIM) can predict which of two signals from objects of 
the same shape is bigger.
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