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Abstract

This paper describes a basic representation of cochlear mechanics. To represent the cochlear partition, we begin with an array of discrete 
tuned resonators, immersed in fluid. The resonators are stimulated by an impulse from another resonator, which is taken to be the middle 
ear. A “state space” representation of the classic transmission line model is used to describe the multiple fluid-borne interactions which take 
place between all the resonators. The overall response seen at the middle ear looks remarkably similar to a click-evoked otoacoustic emission 
(CEOAE) if the place–frequency map of the cochlea contains tuning irregularities. The paper describes, step by step, how the CEOAEs are 
generated. We show that impulse responses from each oscillator are transported back to the ear canal, and that these responses add up to create 
a standing wave pattern in the fluid pressure. This standing wave is the sum of waves repeatedly travelling back and forth between an irregu-
larity and oscillator 1. If only one irregularity is present, the impulse response of oscillator 1 (the “stimulus”) is followed by a weak single oscil-
lation, with the characteristics of a “gammachirp”. If irregularities are present all along the cochlear partition, many gammachirps add up to 
produce a signal with similar characteristics as a CEOAE measured in a normal hearing ear. The model therefore describes the genera-
tion of click-evoked otoacoustic emissions.
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JAK ZESPÓŁ DYSKRETNYCH REZONATORÓW POŁĄCZONYCH PŁYNEM MOŻE 
REPRODUKOWAĆ DYNAMIKĘ EMISJI OTOAKUSTYCZNYCH WYWOŁANYCH 
TRZASKIEM

Streszczenie

Praca opisuje prosty model mechaniki ślimaka. Aby odwzorować przegrodę ślimaka wyszliśmy od zespołu pojedynczo nastrojonych rezo-
natorów zanurzonych w płynie. Rezonatory są pobudzane impulsem z innego rezonatora, który przedstawia ucho środkowe. Przedstawienie 
klasycznego modelu transmisji liniowej jako przestrzeni stanów zostało użyte do opisu wielokrotnych przenoszonych w płynie wzajem-
nych oddziaływań między wszystkimi rezonatorami. Ogólna odpowiedź rejestrowana na uchu środkowym jest niezwykle podobna do emisji 
otoakustycznej wywołanej trzaskiem (CEOAE), jeżeli mapa rozmieszczenia częstotliwości w ślimaku obejmuje nieregularności strojenia. 
W tej pracy opisujemy krok po kroku jak generowane są CEOAE. Pokazujemy, że odpowiedzi na impulsy z każdego oscylatora są przeka-
zywane wstecznie do kanału słuchowego i że odpowiedzi te sumują się, aby stworzyć wzór fali stojącej ciśnienia płynu. Ta fala stojąca jest 
sumą fal przemieszczających się pomiędzy miejscem wystąpienia nieprawidłowości a oscylatorem 1. Jeżeli występuje tylko jedna nieregular-
ność, po impulsie z oscylatora 1 („bodźcu”) następuje słaba pojedyncza oscylacja typu „gammachirp”. Jeżeli wzdłuż całej przegrody ślimaka 
występują nieregularności, wiele tonów typu „gammachirp” sumuje się i powstaje sygnał o charakterystyce zbliżonej do CEOAE mierzonych 
w normalnie słyszącym uchu. Oznacza to, że model dobrze opisuje powstawanie emisji otoakustycznych wywołanych trzaskiem. 

Słowa kluczowe: model przestrzeni stanów • ton gamma • zespół oscylatorów • ślimak • gammachirp • nieregularności

Introduction

Otoacoustic emissions (OAEs) are weak sounds emitted by 
the inner ear which were discovered by Kemp more than 
40 years ago [1,2]. His startling discovery was soon con-
firmed by others [3–7]. Probst et al. [8] has given a good 
review of the different classes of OAEs and their properties.

One of these classes are click-evoked otoacoustic emis-
sions (CEOAEs) which, almost right after their discovery, 
became widely used clinically to test the integrity of the 

human cochlea, especially in newborns [9]. Many charac-
teristics of CEOAEs were investigated in early studies (see 
for instance the 1980 paper by Kemp and Chum [10]). One 
of these characteristics is that a CEOAE shows the typi-
cal pattern as shown in Figure 1A: lower frequency com-
ponents appear later along the time axis. A rough esti-
mate is that the delay after stimulus onset for a particular 
frequency component is about 10 periods [2,4]. The fre-
quency spectrum of a CEOAE shows a peaked structure 
(Figure 1B), and no two ears produce exactly the same 
CEOAE pattern [11].
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The spectrum shown in Figure 1B shows a more or less 
regular pattern (equal distances between the peaks). To 
explain this periodicity, that can be seen many times 
in CEOAE spectra, Zweig and Shera [12] proposed the 
presence of random irregularities in the micromechan-
ics of the organ of Corti. This concept inspired the pres-
ent author decades ago [13] to synthesise CEOAEs by 
adding together 256 fourth-order gammatones. The fre-
quencies of the gammatones were generated by multi-
plying each number in a regular array, which increased 
exponentially from 0.5 to 5 kHz, with 1 + 0.02ηi (where 
the random numbers ηi come from a normal distribution 
with mean 0 and standard deviation 1). Irregularities were 
necessary to generate realistically looking CEOAEs. For 
all ηi being 0, the gammatones cancel each other except 
at the edges of the array [14].

In this respect it should be noted that Gold, the predictor 
of spontaneous otoacoustic emissions [15], stated at a con-
gress in 1988 that individual fibers in the inner ear would 
all cancel their outputs if they were neatly overlapping, and 
that therefore inaccuracies in the system are necessary to 

produce evoked sound [16]. A few years earlier Sutton and 
Wilson [17] had already proposed a model in which emis-
sions were caused by irregularities in cochlear frequency 
mapping. However, the essential difference between the 
model of Sutton and Wilson and the approach used here is 
that these authors introduced only a few localised irregular-
ities, while in the present paper irregularities are inserted 
all along the cochlear partition.

“Simply” adding gammatones to synthesise a CEOAE sup-
poses three things: 1) that the click stimulus generates gam-
matone-like vibrations all along the cochlear partition; 2) 
that there is no onset delay for these vibrations; and 3) 
that all vibrations are transported back to the ear canal, 
also without delay.

The present paper also incorporates the concept of random 
irregularities, but it follows a less direct approach to calcu-
late how CEOAEs are generated. In essence, it investigates 
the properties of an array of harmonic oscillators embed-
ded in fluid, as in the classical transmission line model for 
the mammalian cochlea [18,19]. A valuable aspect of this 
approach is that it makes clear three aspects that are not 
covered in the “sum of gammatones” approach: the trans-
port of the stimulating click from the middle ear to an indi-
vidual oscillator, the coupling back of the vibration of the 
oscillators to the middle ear, and the coupling between the 
oscillators, which influences their behaviour.

The paper concentrates on, and describes in detail, what is 
minimally needed to obtain CEOAEs with realistic prop-
erties. It is, in fact, the basal part of more extensive mod-
els, like for instance that of Moleti et al. [20].

We start with the description of the model with no irregu-
larities included. This is followed by an investigation of its 
behaviour when stimulated with a continuous sine wave or 
with a click. The next step is the introduction of a single 
irregularity in the array of natural frequencies of the oscil-
lators. Finally, irregularities are incorporated all along the 
oscillator array. A mathematical basis of the model and its 
properties can be found in three appendices.

Calculations were done with Mathematica and are partly 
based on the compact “state space” formulation [21]. 

The model

The human cochlea is represented by a one-dimensional 
array of n–1 harmonic oscillators immersed in fluid 
in a rigid-walled box (Figure 2).

It is supposed that the coupling between the oscillators is 
only through the fluid. The fluid pressure that is exerted 
on an individual oscillator will obey the same relations as 
in the state space model of Elliott et al. [22–24] (details are 
given in Appendix 1).

The equation to be solved for the time course of displace-
ment xj(t) of the j-th oscillator in the array is the well-
known differential equation for a damped harmonic oscil-
lator driven by an external force:

ẍj(t) + γjωjẋj(t) + ωj2xj(t) = κpj(t) ,     (1)
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Figure 1. A. Click-evoked otoacoustic emission (CEOAE), 
measured in the ear of a normal hearing adult with the 
Otodynamics ILO v6 equipment in a clinical setting. 
The first 3 ms of the response is truncated to remove the 
much stronger stimulus. B. Amplitude spectrum for the 
signal in A

Figure 2. Blue rectangles numbered 2 to n: array of oscilla-
tors in a fluid-filled box, representing the human cochlea. 
Oscillator 1 represents the whole middle ear, including 
the ear drum and ossicles. OW: oval window; RW: round 
window
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with γj being the damping factor, ωj the natural angular fre-
quency, and pj(t) the fluid pressure acting on the j-th oscil-
lator (κ is a constant with value 1 and dimension m2/kg to 
give both sides of the equation the dimension of an accelera-
tion). Equation 1 is the same as that for the oscillatory behav-
iour of the cochlear partitions in the “statespace example.m” 
Matlab-file (a supplement of [24]). All following results are 
for a set of n = 501 coupled differential equations. 

Sine wave stimulus

A continuous sine wave with frequency 1 kHz (the natural 
frequency of oscillator 284) was added to the right-hand 
term κp1(t) of the differential equation for oscillator 1, and 
the set of n = 501 equations was solved with Mathemati-
ca’s NDSolve routine, for a total time of 40 ms and a time 
step of 5 µs. All oscillators started with displacement and 

velocity 0. Natural frequencies fj decayed exponentially 
from 20 to 0.1 kHz for n = 2,..., 501. Damping factor γj 
was 0.07 for all j, except for oscillator 1, where it was 1.0. 
The natural frequency of the first oscillator in the array was 
set at 2.5 kHz. This oscillator is a (simplified) representa-
tion of the middle ear, including the tympanic membrane.

Results of solving the set of differential equations are shown 
in Figure 3. After a few initial periods all oscillators, up to 
about number 290, move sinusoidally with a frequency 
of 1 kHz (Figure 3A), but with different amplitudes (Figures 
3A and B). Amplitudes gradually increase with increasing 
oscillator number up to oscillator 280 (natural frequency 
1.05 kHz), after which it rather abruptly decreases to zero. 
The phase delay also increases with increasing oscillator 
number, up to more than two periods before the amplitude 
suddenly drops, as can be derived from the curvature of the 
ridges of maximum (coloured red) or minimum (coloured 
blue) displacement in Figure 3A.

Figure 3C, calculated in the same way as the envelope in 
Figure 3B, but now for amplitudes on a logarithmic (dB) 
scale, can be compared with results obtained 70 years ago 
by Bogert [18; Figure 8] with a hardware transmission line 
model consisting of 175 sections, or with Figure 3.3 in the 
book on cochlear mechanics by Duifhuis [19].

Click stimulus

The sine wave stimulus for oscillator 1 was replaced by a very 
short gaussian pulse (FWHM 5 µs), acting as a click stim-
ulus. The set of 501 differential equations was again solved 
for the same set of parameters. Now the response of all oscil-
lators is a decaying waveform, with an onset delay and an 
increasing instantaneous frequency (decreasing time between 
zero-crossings) during the first periods. This is illustrated 
in Figure 4, showing the response of oscillator 284 (natu-
ral frequency 1 kHz), together with its amplitude spectrum.

Figure 3. A. Density plot for displacement as a function of 
time for oscillators 2 to 350. The colour bar gives displace-
ment, divided by maximum displacement in the array. B. 
Successive displacement profiles along the array during 
one period of the oscillation. The dashed line marks the am-
plitude (maximum displacement) as a function of oscillator 
number. C. Dashed line in B, with amplitude scale in dB

Figure 4. A. Displacement of oscillator 284 as a function of 
time, if the first oscillator in the array is stimulated with a 
very short impulse. B. The amplitude spectrum of the sig-
nal in A
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Figure 5A is a density plot showing the response of all 
oscillators in the array to the click stimulus. A section 
along the horizontal dashed gridline in this figure gives 
the response of oscillator 284, as shown in Figure 4A. Sec-
tions along the vertical gridlines give the displacement 
profiles of the array at successive times, as shown in Fig-
ure 5B. The profile hardly changes shape (apart from its 
magnitude) while travelling along the array towards its 
low frequency end.

The displacement profile in Figure 5B slows down while 
it travels along the array: after the click stimulus is pre-
sented it covers the same distance between 2.5 and 5 ms 
as between 10 and 20 ms. The velocity of the displace-
ment profile can more precisely be derived from the slope 
of the dashed white line in Figure 5A, giving the result 
that this velocity decreases exponentially from 40 mm/ms 
at the high frequency end to almost zero at the low fre-
quency end.

One irregularity

The natural frequency of oscillator 284 was multiplied 
with 1.02, changing its natural frequency from 1 kHz to 
1.02 kHz. In this way a single irregularity is created in the 
array of oscillators. The responses of the array to a 5 µs 
pulse, applied to oscillator 1, were again calculated, for 
the same set of parameters as before. The response of the 
(heavily damped) oscillator 1 is given in Figure 6A, and 
with an expanded vertical scale in Figure 6B. For compar-
ison the same responses are shown in Figures 6C and D, 
calculated for the situation that no irregularity is present 
in the oscillator array.

The oscillatory component between 3 and 30 ms in Fig-
ure 6B is not present in Figure 6D. This extra component 
is created by an extra component in the pressures pj that 
drive the oscillators (see Equation 1). It is the result of the 
presence of the irregularity in the oscillator array.

Figure 5. A. Density plot of the response of all oscillators 
in response to a click, as a function of time. The horizon-
tal dashed line marks the position of oscillator 284, with 
natural frequency 1 kHz. The vertical dashed lines mark 
the positions of the displacement profiles shown in B. 
The dashed white line follows a local maximum of the 
displacement profile. B. Displacement profiles at 2.5, 5, 10, 
and 20 ms after presentation of a 5 μs pulse to oscillator 1

Figure 6. A and B. Displacement 
of oscillator 1 as a function 
of time with different scales, 
evoked by a 5 µs pulse applied to 
this oscillator, after introduction 
of a small irregularity at the po-
sition of oscillator 284. C and D. 
Same as A and B, but now with-
out an irregularity being present 
in the array
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The array of fluid pressures p(t) (see Equation 2 in Appen-
dix 1) was calculated, both for the situation with and with-
out irregularity at the position of oscillator 284, together 
with their difference. This difference, being the extra (weak) 
pressure component created by the presence of the irreg-
ularity, is shown in Figure 7.

The pressure component shown in Figure 7 is presented 
as a density plot in Figure 8A. The horizontal dashed line 
in this figure marks oscillator 284, where the irregular-
ity is. Figure 8B is the pressure profile along the array 
at t = 15.35 ms, marked with the vertical dashed line in Fig-
ure 8A. Figure 8C shows 11 successive profiles along this 
dashed line for t = 15.35, 15.40, 15.45, ..., 15.85 ms, cover-
ing half a period of the pressure oscillation.

It is clear from Figures 7 and 8 that the irregularity cre-
ates a standing wave pattern between oscillators 284 and 
1, with sharp nodes at the positions of oscillators 155, 230, 
and 264. The standing wave is the sum of waves that travel 
backward and forward between the discontinuity, where they 
are reflected, and oscillator 1. That the distance between 
the nodes in Figure 8C decreases with increasing oscilla-
tor number is the result of the decreasing velocity for the 
displacement profile (see Figure 5). The relation between 
velocity and node distance is explained in Appendix 2.

Irregular array

Now the natural frequencies of all oscillators (except oscil-
lator 1) were multiplied by 1 + δj, where δj is randomly 
taken from a normal distribution with mean 0 and stan-
dard deviation 0.02. The result is shown in Figure 9A for 
part of the oscillator array.

The calculation, in the same way as for the case with only 
one irregularity, was repeated. This gave the displacement 
of oscillator 1 as shown in Figure 9B, after suppression of 
the first 1.5 ms to remove the much stronger short initial 
response that is shown in Figures 6A and C. This is the 
impulse response for oscillator 1, being the response of 
the middle ear and hence the signal in the ear canal, that 
is measured as a CEOAE in clinical practice. The ampli-
tude spectrum for the signal in Figure 9B is given in Fig-
ure 9C. It is irregular, and the strongest frequency compo-
nents are roughly in the range 0.5–4 kHz.

A wavelet time–frequency analysis was performed on the 
signal in Figure 9B. This analysis was identical to the method 
used by Wit et al. [25], with one exception: the asymmet-
rical gammatone wavelet was replaced by a symmetrical 
gaussian wavelet which was adjusted to obtain the same 
resolution in the time and frequency domains. The result 
of the analysis is a 50 × 50 array of values for the ampli-
tude of the analysed signal in the time–frequency plane. 

Figure 7. Extra pressure component (with normalised 
maximum value), created by a single irregularity at the po-
sition of oscillator 284

Figure 8. A. Density plot for the pressure profile. The colour bar gives pressure. The horizontal dashed line is at the position 
of the irregularity in the oscillator array. B. Pressure profile at t = 15.35 ms, along the vertical dashed line in A. C. Successive 
pressure profiles for half a period of the pressure oscillation starting at t = 15.35 ms. The dashed lines are at oscillator num-
bers 155, 230, and 264, being the positions of the nodes of the standing wave
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Details of the method can be found in [25]. The result of 
the analysis of the signal in Figure 9B is given in Figure 10A.

The procedure to obtain Figures 9 and 10A was repeated 
for an a new generated array of random irregularities δj, 
giving Figure 10B.

The procedure to obtain Figures 10A and B was repeated, 
each time with a newly generated set of irregularities, until 
100 time–frequency arrays were obtained. The average 
of this set of 50 × 50 arrays is shown in Figure 11, both 
in a 3-D plot and in a density plot. Figure 11B should for 
instance be compared with Figure 2A in [26], being aver-
age time–frequency distributions of CEOAE amplitude 
from 26 normal ears.

Discussion

CEOAE as sum of gammachirps

If the signal in Figure 6D is subtracted from that in Figure 
6B, the extra component in the impulse response of oscil-
lator 1 is obtained. This extra component is evoked by the 
introduction of an irregularity at the position of oscillator 

284 (natural frequency 1 kHz). It is shown as the solid line 
in Figure 12A, after removal of a short onset delay, together 
with its amplitude spectrum in Figure 12C. The signal has 
the shape of a gammachirp, and can be reasonably well fit-
ted with a gammachirp of order 3.5, as shown with the dot-
ted line. Apparently, a discontinuity at the position in the 
array of the oscillator with natural frequency 1 kHz pro-
duces a standing wave pattern between the discontinu-
ity and oscillator 1 (see Figures 7 and 8), with a main fre-
quency of 1 kHz.

If the single discontinuity in oscillator 284 is replaced by 
one in oscillator 219, with natural frequency 2 kHz, a com-
parable result – but now with a frequency of 2 kHz – is 
obtained, as can be seen in Figures 12B and D.

So, in the present model a CEOAE is the sum of gam-
machirps, and such a sum is shown in Figure 9B. Time–
frequency analyses of the sum of gammachirps produce 
different results for different “ears” (arrays of irregulari-
ties), and do not differ from those of real CEOAEs (Fig-
ures 10 and 11). In this respect it is not surprising that the 
earlier “sum of gammatones” approach [13] gave a rather 
good reproduction of a CEOAE.

Figure 9. A. Detail of frequency versus oscillator number 
relation. B. Displacement of oscillator 1 as a function of 
time (the first 1.5 ms is suppressed, to remove the much 
stronger impulse response of oscillator 1, as shown in 
Figure 6A). C. Amplitude spectrum for the signal in B Figure 10. A. Time–frequency analysis of the signal 

shown in Figure 9B. B. The same, but for another array of 
irregularities
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A consequence of the present model is that no two ears can 
have the same pattern of irregularities along the cochlear 
partition, because no two ears produce exactly the same 
CEOAE [11]. The oscillators in the model by Fruth et al. [27], 
describing the statistics of spontaneous otoacoustic emissions, 
are – for a comparable reason – subject to a weak spatial dis-
order “that lends individuality to the simulated cochlea». 

Frequency glides

If the oscillators in Figure 2 were not coupled, their impulse 
response would be that for an isolated, weakly damped, har-
monic oscillator, being an exponentially decaying oscilla-
tion with a constant frequency. Cochlear impulse responses, 
as for instance those measured by De Boer and Nuttall 
[28] with a laser Doppler vibrometer, do not have a con-
stant frequency. They show a distinct frequency glide: an 
initial increase in instantaneous frequency, which levels 
off after several cycles to a constant value (the character-
istic frequency).

Shera [29] argued that upward frequency glides in click 
responses of the basilar membrane (as measured at a par-
ticular point) originate primarily through the time depen-
dence of the fluid pressure at that point – a global effect 
which is not compatible with the differential build-up and 
decay of multiple micromechanical resonances at that loca-
tion (as some earlier models had supposed).

The present model supports Shera’s view straightforwardly: 
the only coupling between the oscillators in the model used 
here is through the pressure of the fluid that surrounds the 
oscillators (see Figure 2), as represented by Equation 2 in 
Appendix 1. And – as can be seen in Figure 4A – this cou-
pling produces an initial frequency glide (decreasing time 
between zero-crossings) in the impulse response of the 
oscillators in the array.

Figure 11. A. 3D-plot for the normalised average of 
100 time–frequency plots, like those in Figures 10A and B.  
B. The same average, but now shown as a density plot of 
the 50 × 50 array of amplitude values

Figure 12. A, B. Solid lines: Extra component in the impulse response of oscillator 1, evoked by the introduction of an 
irregularity at the positions of the oscillators with natural frequencies 1 and 2 kHz respectively. Dotted lines: fits with a 
gammachirp of order 3.5, with equation d(f,t) = at2.5e–bt sin[2πf(t + αe–t/µ – α) + φ] (see Appendix 3 for an elucidation of the 
equation). C, D. Amplitude spectra for the signals shown with a solid line in A and B
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Conclusion 

In the “sum of gammatones” approach [13,14] it is supposed 
that the gammatones are the locally generated impulse 
responses of cochlear oscillators. And, if the place–fre-
quency map of the cochlea is irregular, then these impulse 
responses are transported back to the ear canal without 
delay and add up to a CEOAE-like signal.

In the present paper a CEOAE is the sum of gammachirps 
created by repeated reflection of a travelling wave at irreg-
ularities in the place–frequency map. This creates a stand-
ing wave pattern in the cochlear fluid pressure, being the 
sum of waves travelling back and forth repeatedly between 
the irregularities in the array and the stapes. If irregular-
ities are present all along the array, the gammachirps add 
up to a signal with the same characteristics as a CEOAE 
measured in a normal hearing ear.

Appendix 1

The state space model [22–24] adopts the long wave-
length assumption, with as a starting point the differential 
equation [δ2p(t)/δx2] – [2ρ δ2w(t) / Hδt2] = 0. This equa-
tion describes the one-dimensional “slow” wave propaga-
tion along the cochlea [19,22]. The waveform of the dif-
ferential pressure along the cochlear partition is given by 
p(t); δ2w(t)/δt2 is the radially averaged transverse accel-
eration of the cochlear partition; ρ is the density of the 
cochlear fluid; and H is the height of the canal above and 
below the cochlear partition, which is assumed to be con-
stant. For a cochlea with discrete sections of length Δ, the 
term δ2p(t)/δx2 is, for the j-th section, approximated by 
[pj–1(t) – 2pj(t) + pj+1(t)] /Δ2.

Following Equations 10 and 11 in Elliott et al. [22], the 
relation between the array of n local pressures p(t) and the 
array of n accelerations a(t) will be given by F·p(t) = αa(t) 
in which F is an n × n finite difference matrix and α a 
multiplication factor proportional to fluid density ρ.  Fur-
thermore, p(t) = {p1(t), p2(t), … pn(t)}T,  and a(t) = {a1(t), 
a2(t), … an(t)}T, with aj(t) = ẍj(t). 

The j-th row of matrix F is {0, 0 ,…, 1, –2, 1, 0, 0,…, 0), where 
–2 is the diagonal element. The consequence is that the j-th 
element in the product F·p(t) is pj–1(t) – 2pj(t) + pj+1(t), being 
the numerator in the expression above that approximates 
δ2p(t)/δx2. Multiplication of both sides of F·p(t) = αa(t) 
with the inverse matrix F–1 gives

p(t) = αF–1·a(t).         (2)

According to equation (2), local pressure pj(t) in Equa-
tion 1 in the model section above will now be given 
by  F–1(j,i) × ẍi(t), with F–1(j,i) being the i-th element 
of the j-th row of F–1, and ẍi(t) the acceleration of oscilla-
tor i at time t. With this relation for pj(t), Equation 1 spec-
ifies the instantaneous response of the j-th oscillator to the 
pressure set up at that point by the motion (and fluid dis-
placement) of all the other oscillators. The structure of matrix 
F–1 is illustrated in Figure 4 in [23], showing that the accel-
erations of the oscillators with a natural frequency higher 
than fj = ωj /2π  (the oscillators situated more basal) con-
tribute equally strongly to the pressure exerted on the j-th 

oscillator, while the contribution of the more apical oscil-
lators decreases linearly with decreasing natural frequency.

The value of differential fluid pressure parameter α in 
Equation 2 is given by the value of 2ρΔ2/h in the state space 
model [22], where Δ is the length of one basilar membrane 
section, h the height of the fluid canal above and below the 
cochlear partition, and ρ the density of the fluid. The val-
ues used for Δ, h, and ρ in the “statespace example.m” Mat-
lab-file are 35/512 × 10–3 m (35 mm divided into 512 sec-
tions), (units of 10–3 m and 103 kg/m3 respectively), giving 
the value 0.00935 for 2ρΔ2/h. This was rounded off to 
0.01 as the value of α.

Appendix 2

To describe the standing wave pattern, that can be seen 
in Figures 7 and 8, we start with db(x,t) = sin[2π(ft + cx)], 
being a sinusoidal wave, travelling backward along the 
oscillator array with constant velocity (x is oscillator num-
ber, t is time, f is frequency, c is a constant). If a forward 
travelling wave df(x,t) = sin[2π(ft – cx)], also with constant 
velocity, is added to the backward travelling wave, a stand-
ing wave ds(x,t) = db(x,t) + df(x,t) is obtained. This sum can 
also be written as ds(x,t) = 2sin[2πft]cos[2πcx], from which 
it can be concluded that the nodes of the standing wave 
are at the zero-crossings of the cosine term. These zero-
crossings are at the solution of 2πcx = π(2n–1)/2; n = 1, 2, 
…;  being x = (2n –1)/4c. The wavelength of the standing 
wave, the distance between successive odd or even num-
bered nodes, is then given by λ = 1/c.

It is clear at a glance that the standing wave in Figure 8C 
does not have a constant wavelength. The term cos[2πcx] 
in the above formula for the standing wave is therefore 
replaced by cos[2πφ(x)]. To give the positions of the nodes 
in Figure 8C, marked with the dashed lines, φ(x) must then 
have the values 1/4, 3/4, 5/4 for x = 155, 230, 264 respec-
tively. This condition is represented with the red dots in 
Figure A below. The blue line in the same figure is a fit 
with φ(x) = α(eβx –1), for α =  0.03016 and β = 0.01419. 
Figure B gives cos[2πα(eβx–1)] for these values of α and β.

Appendix 3

A convenient formula for the initial frequency glide (if pres-
ent) of an impulse response is: f(t) = f∞(1–ρe–t/µ), with f(t) 
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being the instantaneous frequency as a function of time t, 
f∞ the final frequency, ρ determines f(0), and µ represents 
how fast f(t) reaches its final value. The time integral of 
f(t) is f∞(t + ρµe–t/µ). From this integral a formula for the 
oscillating term of an impulse response can be derived: 
O(t) = sin[2πf∞(t + ρµe–t/µ – ρµ) + φ0].  (The term –ρµ was 
added to make the oscillating term start at zero, for initial 
phase φ0 = 0.) A formula for a gammachirp of order n is 
obtained by multiplying O(t) with the envelope function 
αtn–1e–bt,  giving d(f,t) = αt2.5e–bt sin[2πf(t + αe–t/µ – α) + φ], 
for n = 3.5.

The generally used equation for a gammachirp is [30]:  
g(t) = αtn–1e–bt cos[2πf∞t – clogt + φ].  

In this case the instantaneous frequency of g(t) is obtained 
by differentiating 2πf∞t – clogt + φ with respect to t, and 
dividing the result by 2π, giving f(t) = f∞ –  for the instan-
taneous frequency as a function of time. In this equation 
there is only one parameter (c) to determine the profile of 
the initial frequency change, while in d(f,t) this profile is 
determined by two parameters (ρ and µ). 

Furthermore: f(t) is negative for t <  (for posi-
tive c, to have an increasing instantaneous frequency). 
And if t approaches 0 for positive t, the oscillating term 
cos [2πf∞t – clogt + φ]  will show an irregular behaviour, 
depending on the value of c. It is unlikely that a physically 
realisable oscillating system would show such behaviour.
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